Decoupled Adaptation for Cross-Domain Object Detection

Problem

- Object detection in the real world suffers from performance drop due to variance in viewpoints, object appearance, backgrounds, illumination, image quality, etc.
- Domain adaptation aims to transfer a detector from a source domain \mathcal{D}_s , where sufficient training data is available, to a target domain \mathcal{D}_t where only unlabeled data is available.

Challenges

• Data Challenge: What to adapt in the object detection task is unknown.

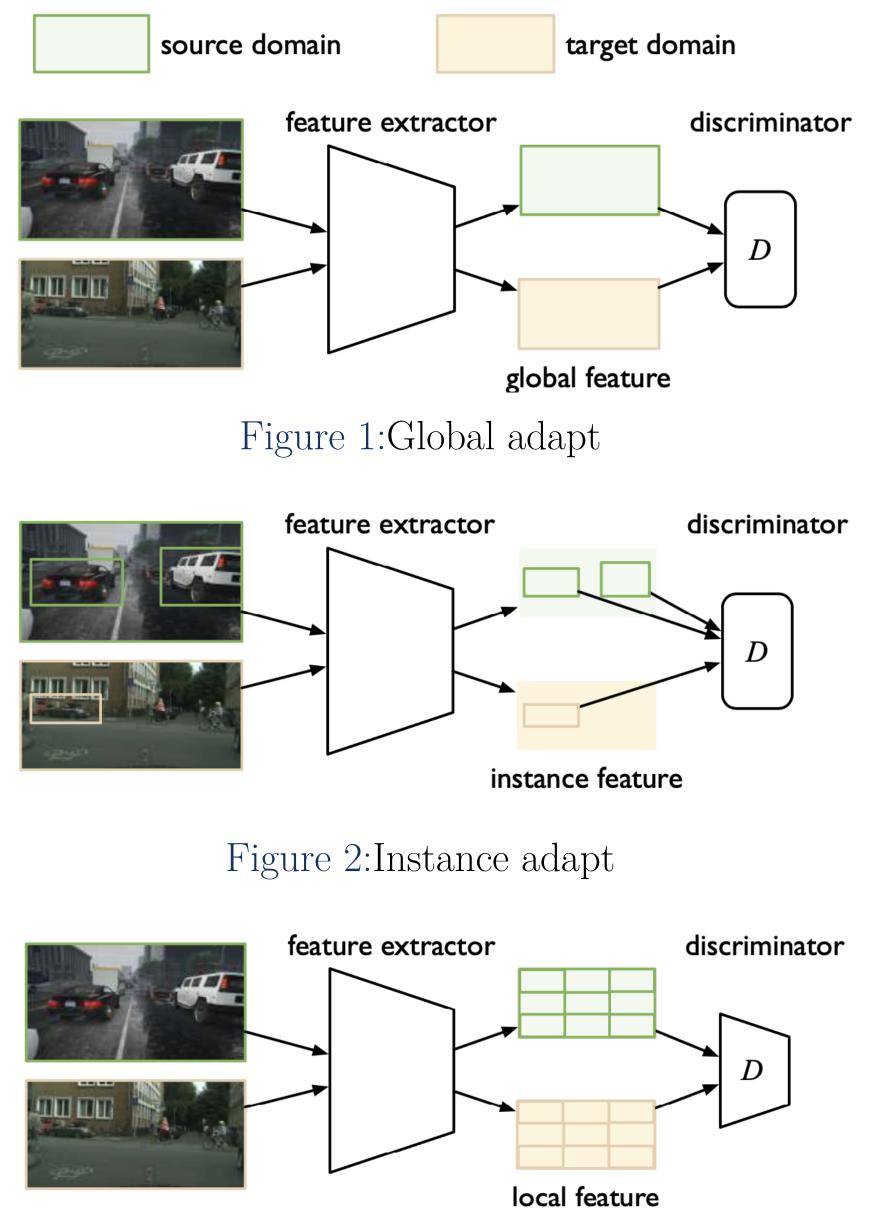


Figure 3:Local adapt

- Architecture Challenge: Introducing domain discriminators into the detector architecture might deteriorate the discriminability of detectors.
- Task Challenge: As a multi-task learning problem, it's difficult to adapt detectors for different tasks at the same time.

Tsinghua University

D-adapt Framework

Procedures:

- Decouple the original cross-domain detection problem into several sub-problems.
- Design domain adaptors to solve each sub-problem.
- ³Coordinate the relationships between different
- adaptors and the detector.

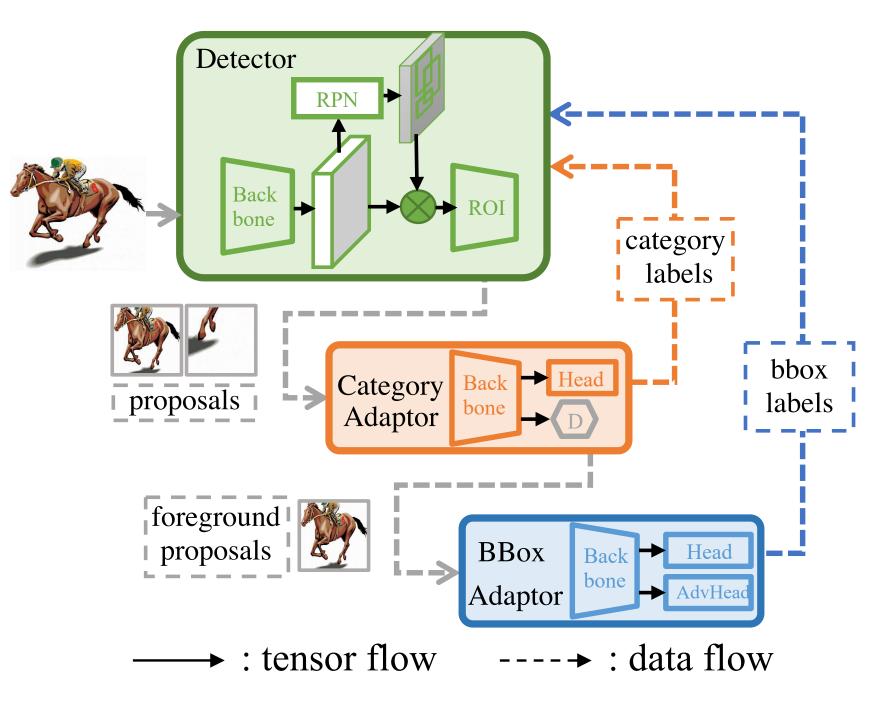


Figure 4:D-adapt Framework.

Meanings: Different parts have independent parameters, data distributions, and training losses. Summary:

- Architecture challenge \Rightarrow Decouple the adversarial adaptation from the training of the detector by introducing a parameter-independent category adaptor.
- **2** Task challenge \Rightarrow Introduce another bounding box adaptor that's decoupled from both the detector and the category adaptor.
- **3** Data challenge \Rightarrow Adjust the object-level data distribution for specific adaptation tasks.

Contact Information

- Paper: Decoupled Adaptation for Cross-Domain Object Detection
- Code: Transfer-Learning-Library
- Email: JiangJunguang1123@outlook.com

Junguang Jiang, Baixu Chen, Jianmin Wang, Mingsheng Long

Category Adaptation

- Challenge: The input data distribution doesn't satisfy the low-density separation assumption well \Rightarrow impede the adversarial alignment.
- **Solution**: Use the confidence of each proposal to discretize the input space. The objective of the discriminator D is,

$$\max_{D} \mathcal{L}_{adv}^{cls} = \mathbb{E}_{\mathbf{x}_s \sim \mathcal{D}_s^{prop}} w(\mathbf{c}_s) \log[D(\mathbf{f}_s, \mathbf{g}_s)]$$
(

 $+\mathbb{E}_{\mathbf{x}_t\sim\mathcal{D}_t^{\text{prop}}}w(\mathbf{c}_t)\log[1-D(\mathbf{f}_t,\mathbf{g}_t)],$ where $\mathbf{f} = F^{\text{cls}}(\mathbf{x})$ is the feature and $\mathbf{g} = G^{\text{cls}}(\mathbf{f})$ is the category prediction.

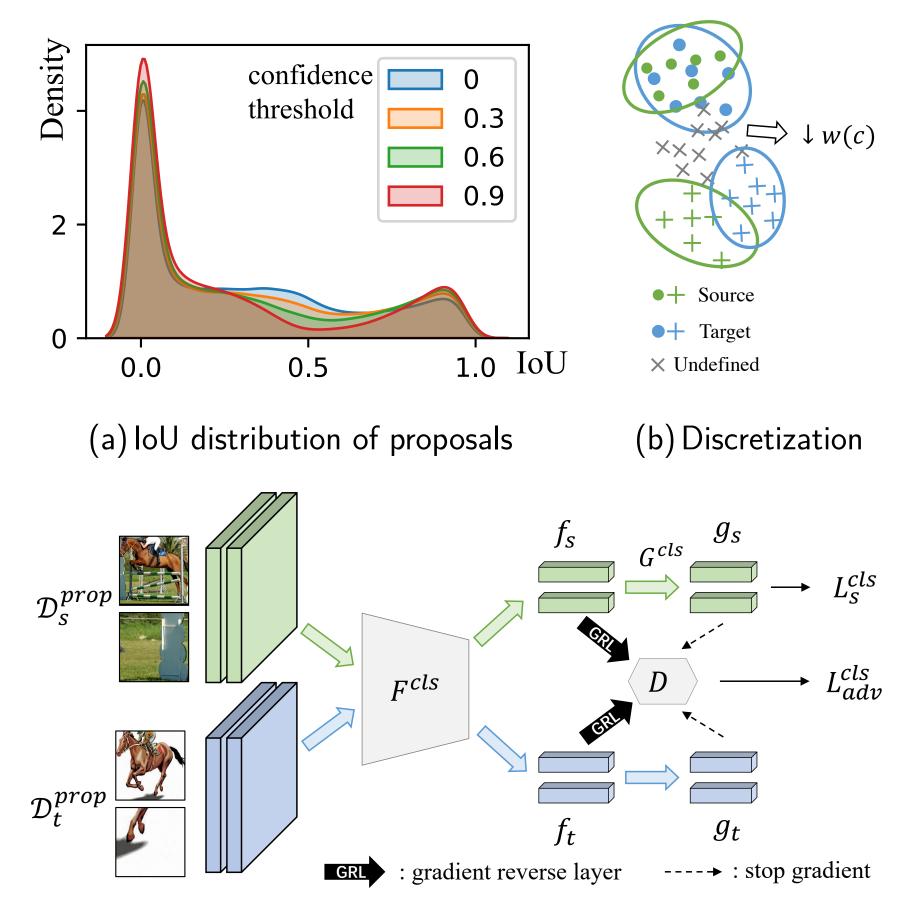


Figure 5: Architecture of the category adaptor.

Bounding Box Adaptation

Introduce an adversarial regressor network G_{adv}^{reg} to maximize its disparity with the main regressor on the target domain while minimizing the disparity on the source domain to measure the discrepancy across domains.

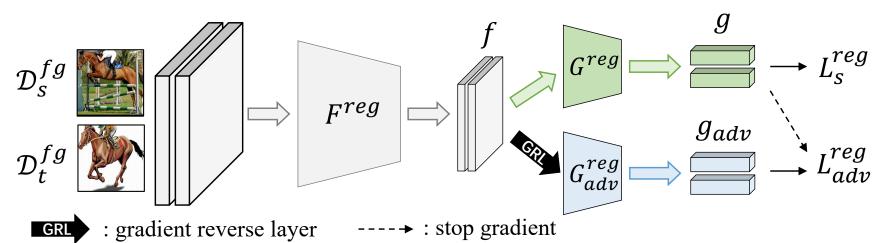


Figure 6:Architecture of the bounding box adaptor.

Quantitative Results

D-adapt achieves state-of-the-art results on four crossdomain object detection tasks and yields 17% and 21%relative improvement on benchmark datasets Clipart1kand Comic 2k in particular.

Table 1:Results from VOC to Comic (ResNet-101).

Method	bike	bird	car	cat	dog	prsn	mAP
Source Only	32.5	12.0	21.1	10.4	12.4	29.9	19.7
DA-Faster	31.1	10.3	15.5	12.4	19.3	39.0	21.2
SWDA	36.4	21.8	29.8	15.1	23.5	49.6	29.4
MCAR	47.9	20.5	37.4	20.6	24.5	53.6	33.5
Instance Adapt	39.5	17.7	26.5	27.3	22.4	48.4	30.3
Global Adapt	31.9	15.7	30.3	21.3	17.1	37.9	25.7
D-adapt	52.4	25.4	42.3	43.7	25.7	53.5	40.5
Oracle	42.2	35.3	31.9	46.2	40.9	70.9	44.6

Table 2: Ablations on category adaptation. VOC to Clipart.

metric	ours	w/o condition	w/o source target	bg pr	ropos	als	w/o weight	w/o adaptor
$mIoU^{cls}$	38.2	36.9	_	36.6	33.6	25.1	17.2	12.6
mAP	43.5	41.7	-	41.7	38.8	36.5	33.3	28.0

Table 3: Ablations on box adaptation. VOC to Clipart.

metric	Ours	w/o DD	w/o adaptor
mIoU ^{reg}	0.631	0.598	0.531
mAP	45.0	44.4	43.5

Qualitative results

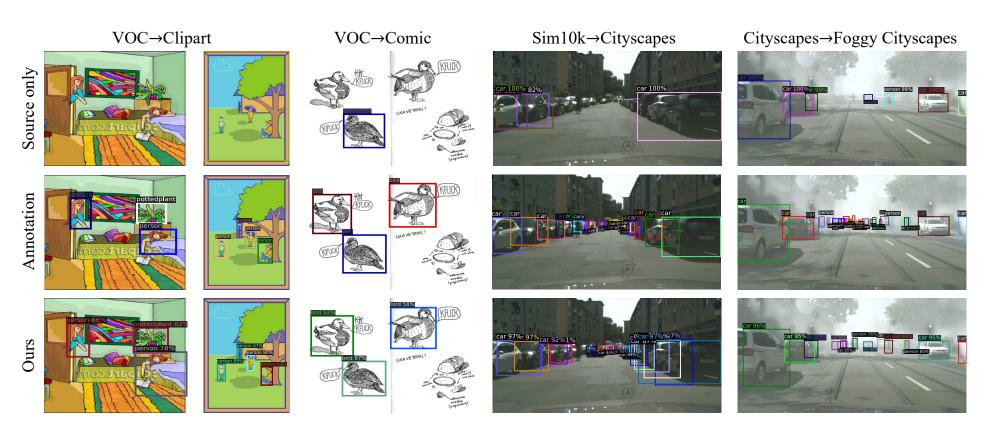
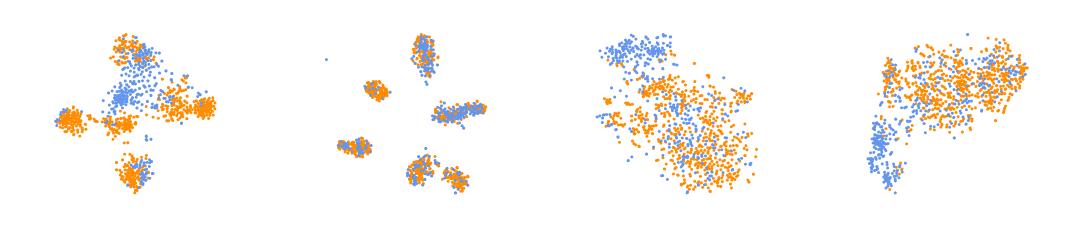


Figure 7: Qualitative results on the target domain.



(a) Adaptor $\lambda = 0$ (b) Adaptor $\lambda = 1$ (c) Faster-RCNN (d) D-adapt Figure 8:T-SNE visualization of features on task VOC \rightarrow Comic2k.