# Regressive Domain Adaptation for Unsupervised Keypoint Detection

Junguang Jiang<sup>1</sup>, Yifei Ji<sup>1</sup>, Ximei Wang<sup>1</sup>, Yufeng Liu<sup>2</sup>, Jianmin Wang<sup>1</sup>, Mingsheng Long<sup>1</sup>

<sup>1</sup>Tsinghua University, <sup>2</sup>Kuaishou Technology

JiangJunguang1123@outlook.com

## Introduction Problem

#### 2 Method

- Preliminaries
- RegDA

#### 3 Experiments

- Quantitative Results
- Qualitative Results

#### Open-Source Library

#### **Motivations**

- The annotations of 2D keypoints on real images are expensive and time-consuming to collect while that on synthetic images can be obtained in abundance by CG at a low cost.
- Domain shifts between virtual and real domains will cause significant performance drop, thus domain adaptation is important for this problem.



Figure: Confusion of keypoints on the target domain.

 No clear decision boundary exists in regression, thus feature alignment, such as DAN <sup>1</sup> and DANN <sup>2</sup>, cannot enlarge the margins of boundaries to generalize the model as done in classification.

<sup>1</sup>Long, et al. Learning Transferable Features with Deep Adaptation Networks. ICML 2015. <sup>2</sup>Ganin, et al. Domain-Adversarial Training of Neural Networks. ICML 2015.

Junguang Jiang $^1$ , Yifei Ji $^1$ , Ximei Wang $^1$ , Yufeng Liu $^2$ ,

## IntroductionProblem

## 2 Method• Preliminaries

• RegDA

#### 3 Experiments

- Quantitative Results
- Qualitative Results

#### Open-Source Library

#### Learning Setup

In supervised 2D keypoint detection, we have *n* labeled samples  $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$  from  $\mathcal{X} \times \mathcal{Y}^K$ , where  $\mathcal{X} \in \mathcal{R}^{H \times W \times 3}$  is the input space,  $\mathcal{Y} \in \mathcal{R}^2$  is the output space and *K* is the number of keypoints for each input. The goal is to find a regressor  $f \in \mathcal{F}$  that has the lowest error rate  $\operatorname{err}_D = \mathbb{E}_{(x,y)\sim D} \mathcal{L}((f \circ \psi)(\mathbf{x}), y)$  on *D*.



In unsupervised domain adaptation, there exists a labeled source domain  $\widehat{P} = \{(\mathbf{x}_i^s, \mathbf{y}_i^s)\}_{i=1}^n$ and an unlabeled target domain  $\widehat{Q} = \{\mathbf{x}_i^t\}_{i=1}^m$ . The objective is to minimize  $\operatorname{err}_Q$ .

#### **Disparity Discrepancy** (DD)<sup>3</sup>

#### **Definition (Disparity on** D)

 $\epsilon_{D}(f_{1},f_{2}) = \mathbb{E}_{(\mathsf{x},\mathsf{y})\sim D}[f_{1}(\mathsf{x})\neq f_{2}(\mathsf{x})].$ 

#### Definition (Disparity Discrepancy (DD))

Given a hypothesis space  $\mathcal{F}$  and a *specific hypothesis*  $h \in \mathcal{F}$ , the Disparity Discrepancy (DD) is

$$d_{h,\mathcal{F}}(P,Q) = \sup_{f' \in \mathcal{F}} \left( \mathbb{E}_Q[f' \neq f] - \mathbb{E}_P[f' \neq f] \right)$$
(1)

#### Theorem (Bound with Disparity Discrepancy)

For any  $\delta > 0$  and binary classifier  $f \in \mathcal{F}$ , with probability  $1 - 3\delta$ , we have

$$\operatorname{err}_{Q}(f) \leq \operatorname{err}_{\widehat{P}}(f) + d_{f,\mathcal{F}}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + 2\mathfrak{R}_{n,P}(\mathcal{F}\Delta\mathcal{F}) + 2\mathfrak{R}_{n,P}(\mathcal{F}) + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}} + 2\mathfrak{R}_{m,Q}(\mathcal{F}\Delta\mathcal{F}) + \sqrt{\frac{\log\frac{2}{\delta}}{2m}}.$$
(2)

#### Architecture

- Train the adversarial regressor f' to predict correctly on the source domain, while differ from f as much as possible on the target domain.
- Encourage the feature extractor  $\psi$  to output domain-invariant features and deceive f'.
- In keypoint detection where output space is large, it's hard to find the adversarial regressor f' that does poorly *only* on the target domain.



**Figure:** DD architecture under the keypoint detection setting.  $\psi$ : feature generator, f: regressor head, f': adversarial regressor head.

## Introduction Problem

# 2 Method• Preliminaries• RegDA

#### 3 Experiments

- Quantitative Results
- Qualitative Results

#### Open-Source Library

#### Sparsity of the Spatial Density

When the position of the right ankle is mistaken, most likely the left ankle is predicted, occasionally other keypoints predicted, and rarely positions on the background are predicted.



#### Sparsity of the Spatial Density

Denote  $\mathcal{H}(\mathbf{y}_k) \in \mathbb{R}^{H' \times W'}$  as the ground-truth heatmap for keypoint  $\mathbf{y}_k$ . Since wrong predictions are often located at **other** keypoints, we sum up their heatmaps,

$$\mathcal{H}_{\mathrm{F}}(\widehat{\boldsymbol{y}}_{k})_{h,w} = \sum_{k' \neq k} \mathcal{H}(\widehat{\boldsymbol{y}}_{k'})_{h,w}, \qquad (3)$$

where  $\hat{y}'_k$  is the prediction by the main regressor f. Then we normalize the map  $\mathcal{H}_F(y_k)$  into ground false distribution,

$$\mathcal{P}_{\mathrm{F}}(\widehat{\mathbf{y}}_{k})_{h,w} = \frac{\mathcal{H}_{\mathrm{F}}(\widehat{\mathbf{y}}_{k})_{h,w}}{\sum_{h'=1}^{H'} \sum_{w'=1}^{W'} \mathcal{H}_{\mathrm{F}}(\widehat{\mathbf{y}}_{k})_{h',w'}}.$$
(4)

The target disparity is defined as the KL-divergence between the predictions of f' and the ground false predictions of f,

$$L_{\mathrm{F}}(\boldsymbol{p}',\boldsymbol{p}) \triangleq \frac{1}{K} \sum_{k}^{K} \mathrm{KL}(\mathcal{P}_{\mathrm{F}}(\mathcal{J}(\boldsymbol{p}))_{k} || \boldsymbol{p}_{k}'), \qquad (5)$$

where  $p' = (f' \circ \psi)(x^t)$  is the prediction of f' and p is the prediction of  $f_{i,\sigma}$ ,  $i \in [0, \infty]$ 

#### **Minimax of Target Disparity**

- When maximizing the discrepancy between f' and f, we expect to maximize the mean difference, but often the variance is changed.
- Convert the minimax game to the minimization of two opposite goals.



#### **Overall Objectives**

- Supervised training on the source domain.
- Update f' to minimize its KL with ground false predictions of f.
- Update  $\psi$  to minimize KL between prediction of f' with ground truth prediction of f.

Maximize disparity on target (Fix  $\psi$  and f, update f') ground false prediction



## IntroductionProblem

#### 2 Method

- Preliminaries
- RegDA

#### **3** Experiments

- Quantitative Results
- Qualitative Results

#### Open-Source Library

э

-

#### **Quantitative Results**

- Evaluate the performance of Simple Baseline with ResNet101 as the backbone.
- Percentage of Correct Keypoints (PCK) is used for evaluation.

Table: PCK on task RHD H3D. Negative transfer happens for all other domain adaptation methods.

| Method    | MCP  | PIP  | DIP  | Fingertip | Avg  |
|-----------|------|------|------|-----------|------|
| ResNet101 | 67.4 | 64.2 | 63.3 | 54.8      | 61.8 |
| DAN       | 59.0 | 57.0 | 56.3 | 48.4      | 55.1 |
| DANN      | 67.3 | 62.6 | 60.9 | 51.2      | 60.6 |
| MCD       | 59.1 | 56.1 | 54.7 | 46.9      | 54.6 |
| DD        | 72.7 | 69.6 | 66.2 | 54.4      | 65.2 |
| RegDA     | 79.6 | 74.4 | 71.2 | 62.9      | 72.5 |
| Oracle    | 97.7 | 97.2 | 95.7 | 92.5      | 95.8 |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Ablation

Table: Ablation on the minimax of target disparity.



Figure: Empirical statistics during the training process.

## IntroductionProblem

#### 2 Method

- Preliminaries
- RegDA

#### **3** Experiments

- Quantitative Results
- Qualitative Results

#### Open-Source Library

э

-

#### **Qualitative results**

**Source only** often confuses different key points, resulting in the predicted skeleton not look real. In contrast, the outputs of **RegDA** look more like a human hand or body.



**Figure:**  $RHD \rightarrow H3D$  dataset.

#### **Qualitative results**

**Source only** often confuses different key points, resulting in the predicted skeleton not look real. In contrast, the outputs of **RegDA** look more like a human hand or body.



#### **Figure:** $SURREAL \rightarrow LSP$ .

#### **Open-Source Library**

| 🖵 thuml / Transfer-Lear              | ⊙ Watch 👻 29            | 🛨 Unstar 749                | थु Fork 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |    |  |
|--------------------------------------|-------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----|--|
| <> Code ① Issues 1                   | 1 Pull requests 1 ④ A   | ctions III Project          | ts 🖽 Wiki 🕕 Security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / Insights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Settings                                                         |    |  |
| 💡 master 👻 🐉 2 branche               | s 🛇 0 tags              |                             | Go to file Add file *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ± Code →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | About                                                            | 鐐  |  |
| , Junguang Jiang Update domainnet.py |                         |                             | 9ae4f6f6daysago 🕥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 254 commits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Transfer Learning Library for Domain<br>Adaptation and Finetune. |    |  |
| common                               | Update domainnet.py     | Q Search Docs               | Docs > Domain Adaptation Library                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  | D. |  |
| 🖿 dalib                              | fix                     | Get Started                 | DOMAIN ADAPTATION LIBRARY<br>Benchmarks<br>• Unsupervised Domain Adaptation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |    |  |
| docs                                 | adjust training struct  | Introduction<br>Quick Start |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |    |  |
| examples                             | fix: adjust the positio | Visualization<br>FAQ        | Partial Domain Adaptation     Open Set Domain Adaptat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |    |  |
| 🖿 ftlib                              | fix                     | Transfer Learning Library   | Multi Source Domain Adapt     Regression Domain Adapt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mutti source uomain Adaptation     Regression Domain Adaptation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |    |  |
| .gitignore                           | adjust training structu | Domain Adaptation Library   | Segmentation Domain Adu     Keypoint Detection Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in Adaptation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |    |  |
| LICENSE                              | add setup.py; add tut   | Common Package              | Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |    |  |
| LICENSE.md                           | release version         |                             | Manner Matching Methods (DM)     Onemia Averanet Matching Methods (DM)     Manglin Disperying (M)     Manglin Disperying (M)     Minimum Classific Discrepancy (M)     Minimum Class Confusion (MCC)     Adaptore Fairure Astrona (FA)     Seff Essemble     Pratrial Averanetal Domain Adapt     Importanet Notareatal Domain Adapt     Importanet Notareatal Domain Adapt     Importanet Notareatal Domain Adapt     Montential Adaptation (M)     Adversarial Domain Adaptation (M)     Adversarial Domain Adaptation (M)     Adversarial Domain Adaptation (M) | (E) (DAI, MO)           (s) (DAIN), (DAIN)           (s) (DAIN), (DAIN)           (sy) (MCC)           (MCC) |                                                                  |    |  |

RegDA

э.

#### **Design Patterns**



Э