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Abstract

The success of deep learning algorithms generally depends on large-scale data, while humans
appear to have inherent ability of knowledge transfer, by recognizing and applying relevant
knowledge from previous learning experiences when encountering and solving unseen tasks.
Such an ability to acquire and reuse knowledge is known as transferability in deep learning.
It has formed the long-term quest towards making deep learning as data-efficient as human
learning, and has been motivating fruitful design of more powerful deep learning algorithms.
We present this survey to connect different isolated areas in deep learning with their relation
to transferability, and to provide a unified and complete view to investigating transferability
through the whole lifecycle of deep learning. The survey elaborates the fundamental goals
and challenges in parallel with the core principles and methods, covering recent cornerstones
in deep architectures, pre-training, task adaptation and domain adaptation. This highlights
unanswered questions on the appropriate objectives for learning transferable knowledge and
for adapting the knowledge to new tasks and domains, avoiding catastrophic forgetting and
negative transfer. Finally, we implement a benchmark and an open-source library, enabling
a fair evaluation of deep learning methods in terms of transferability.
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1. Introduction

Deep learning (LeCun et al., 2015) is a class of machine learning algorithms that utilize
multiple processing layers to learn representations of data with multiple levels of abstraction.
These multiple processing layers, also called deep neural networks (DNNs), are empowered
with the ability to discover different explanatory factors of variation behind the intricate
structured data (Bengio et al., 2013). With essential advances in network architectures,
training strategies and computation devices, deep learning has made breakthroughs or even
revolutions in various areas, such as computer vision (Krizhevsky et al., 2012; He et al.,
2016), natural language processing (Radford et al., 2018), speech processing (Amodei et al.,
2016), computational biology (Senior et al., 2020), games (Silver et al., 2016; Vinyals et al.,
2019) and so forth. Despite its great success in these important areas, deep learning is still
faced with the grand challenge of data efficiency. Most mainstream deep learning methods
require big datasets in the order of millions or even trillions to achieve good performance,
yet collecting and annotating such huge amount of data for each new task or domain are
expensive and even prohibitive. This data efficiency challenge heavily impedes the adoption
of deep learning to a wider spectrum of application scenarios.

An effective solution to this challenge is to explore the transferability in deep learning.
Transferability is a foundational ability of human learning: human beings can gain relevant
knowledge from other related problems and apply it to handle new problems with extremely
few samples (Thrun and Pratt, 1998). In deep learning, transferability refers to the ability
of deep neural networks to extract transferable representations from some source tasks and
then adapt the gained representations to improve learning in related target tasks (Bengio,
2012). Recent advances in deep learning reveal that deep models trained via upstream tasks
on large-scale data tend to yield good transferability to a variety of downstream tasks, such
as visual object detection (Ren et al., 2015), natural language understanding (Devlin et al.,
2019), to name a few. Transferability has become the central property of deep learning for
improving data efficiency. It is on par with generalizability, interpretability, and robustness
for bridging the gap between machine learning and human learning.

Pre-Trained 
ModelLabeled / 

Unlabeled

Pre-Training

Upstream Task

Adapted 
Model

Adaptation

Downstream Task

Target Domain

Source Domain

Upstream
Data

Downstream
Data

Figure 1: The two-stage lifecycle of most deep learning applications. In the first stage, the
deep model is pre-trained on an upstream task with large-scale data (labeled or unlabeled)
for gaining transferable knowledge. In the second stage, the pre-trained model is adapted
to a downstream task in the target domain with labeled data; If the downstream task only
has unlabeled data, then additional labeled data from another source domain of identical
learning task but different data distribution will be used to improve performance.
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Towards gaining and applying knowledge with good transferability, the lifecycle of many
deep learning applications is divided into two stages: pre-training and adaptation (Figure 1).
The goal of the pre-training stage is to gain the transferable knowledge. The deep models are
pre-trained on an upstream task with large-scale data (either labeled or unlabeled) to learn
disentangled representations or reusable parameters that are transferable to a variety of
downstream tasks. The goal of the adaptation stage is to reuse the transferable knowledge.
The pre-trained models are adapted to a downstream task in the target domain with labeled
data, and the previously learned knowledge enables better generalization with fewer labeled
samples. When the downstream task only has unlabeled data, additional labeled data from
another source domain of identical learning task but different data distribution will be used
to improve the data efficiency of the adapted model (Ganin and Lempitsky, 2015).

It is helpful to highlight the difference underlying the transferability in the two stages.
The pre-training stage focuses mainly on the generic transferability, i.e., obtaining a general
transferable representation that can improve the performance of as many downstream tasks
as possible. In contrast, the adaptation stage pays attention to the specific transferability,
i.e., how to exploit the transferable knowledge in pre-trained models for a specific kind of
downstream tasks, or how to improve the transferability between related domains of the
same downstream task. The generic transferability is attractive since it may benefit many
downstream tasks without additional cost or special design. Yet it may ignore the special
structures of downstream tasks that are crucial for stronger transferability, thus the specific
transferability is still necessary in many cases. Recently, the gap between the pre-training
stage and the adaptation stage is getting closer. Several pre-training methods are designed
to obtain fast model adaptation ability in the adaptation stage (Finn et al., 2017), while
some adaptation methods try to convert downstream tasks into pre-training tasks to make
full use of the generic transferability of pre-trained models (Brown et al., 2020).

Transferability lies at the core of the whole lifecycle of deep learning, yet different areas
such as domain adaptation (Zhuang et al., 2021) and continual learning (Delange et al.,
2021), mainly explore transferability in a partial regime of the lifecycle. This is not enough
to achieve a complete picture of transferability. Thereby, we present this survey to connect
different isolated areas in deep learning with their relation to transferability, and to provide
a unified and complete view to investigate transferability through the whole lifecycle of deep
learning. Due to the broadness of the scope and the limitation of the space, we do not aim
to cover all methods towards transferability. Instead, we elaborate on the core principles
and methods and then give a brief review of the expanded literature. We further implement
TLlib, a high-quality open library to provide a fair evaluation of typical methods. We hope
this survey can highlight the grand picture of transferability in deep learning, and provide a
useful navigation to researchers interested in improving the data efficiency of deep learning.

1.1 Terminology

Foremost, we give several definitions related to transferability, and the summary of notations
and their descriptions used in this survey can be found in Table 1. Denote the input space
as X and the output space as Y, and assume that there exists an unknown labeling function
f : X 7→ Y. Formally, a task corresponds to learning an underlying labeling function f . To
learn a task, we first collect a set of samples D̂ = {x1, ...,xn}, which are drawn independently
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Table 1: Notations and descriptions used in the survey.

X Input space
Y Output space
D A fixed but unknown distribution over X
D̂ Empirical distribution of a sample drawn i.i.d. from D
P (·) Probability of an event
E(·) Expectation of a random variable
U Upstream data
S Source domain in downstream data
T Target domain in downstream data
H Hypothesis space
h A hypothesis in the hypothesis space H
ψ Feature generator
θ Hypothesis parameter
x Model input
y Model output
z Hidden activation of the feature generator
D A discriminator to distinguish different distributions

and identically distributed (i.i.d.) from some fixed but unknown distribution D. Formally,
a domain is a marginal probability distribution P (X) defined on a certain input space X .
Consider a set of hypotheses H and a specific loss function ` : Y × Y 7→ R+, the objective
of the learner is to select a hypothesis h ∈ H that yields the lowest generalization error,
minh∈H Ex∼D`(h(x), f(x)).

Definition 1 (Transferability) Given a source domain S with learning task tS and a
target domain T with learning task tT , transferability is the ability of gaining transferable
knowledge from tS on S and reusing the knowledge to decrease the generalization error of
tT on T , under the distribution shift S 6= T or the task discrepancy tS 6= tT .

In the deep learning lifecycle (Figure 1), the pre-training stage aims to gain transferable
knowledge via learning on upstream task with large-scale data, while the adaptation stage
aims to reuse the pre-trained knowledge to improve the data efficiency in downstream tasks.
The upstream and downstream are different in both learning tasks and data distributions.
To conform with the literature, in the pre-training stage, we will replace the notions of source
domain/task with the widely-used upstream data/task, denoted as U and tU respectively.

1.2 Overview

The survey is organized around how to acquire and utilize the transferability in deep learning
throughout its whole lifecycle, including pre-training, adaptation, and evaluation (Figure 2).

• Pre-Training. We first briefly discuss some important model architectures that make
pre-trained representations transferable. Then we elaborate on supervised pre-training
and unsupervised pre-training, which are distinguished by the availability of labeled
or unlabeled data for pre-training. In supervised pre-training, we cover both standard
practices commonly used in the industry and research advances in academia to acquire
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Figure 2: Overview of this survey. The survey is organized around the lifecycle (pre-training,
adaptation, and evaluation) of deep learning applications and focuses on the core problems
and methods towards transferability. Besides, we briefly review related learning setups.

transferability on the labeled data. In unsupervised pre-training, we cover the latest
designs of proper pre-training tasks on unlabeled data to gain transferability.

• Adaptation. We mainly elaborate on task adaptation and domain adaptation, which
are divided by whether there exists another related source domain in addition to the
pre-trained model for boosting the downstream task performance. In task adaptation,
we first pinpoint several open problems caused by the discrepancy between upstream
tasks and downstream tasks, then illustrate how different task adaptation paradigms
(Yosinski et al., 2014; Brown et al., 2020) close the task discrepancy to better utilize
the transferability. In domain adaptation, we first pinpoint the most influential theo-
ries for closing the distribution shift (Ben-David et al., 2006, 2010a), then elaborate
how to derive solid learning algorithms (Long et al., 2015; Ganin and Lempitsky, 2015)
from these theories to enhance the transferability of deep models across domains.

• Evaluation. We mainly investigate the transferability gained and reused by different
pre-training and adaptation methods on several large-scale datasets released recently
in the literature. Note that we omit some small-scale and relatively obsolete datasets
to make our benchmark concise and easy to report. To facilitate fair evaluation and full
reproduction of existing algorithms, we open source TLlib, a high-quality library along
with this survey at https://github.com/thuml/Transfer-Learning-Library.

Pre-training and adaptation lie at the core methods towards transferability. In parallel
with them, there are some fields that are also closely related to the transferability in deep
learning, such as domain generalization (Gulrajani and Lopez-Paz, 2021), out-of-distribution
(OOD) generalization (Bengio et al., 2021), few-shot learning (Chen et al., 2019a), etc.
Recent evaluation shows that these learning setups can largely benefit from the advancement
in pre-training and adaptation and we will give a brief review to them in the related sections.
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2. Pre-Training

Despite yielding unprecedented performances on various machine learning tasks, the deep
learning methods require large amounts of labeled data to generalize well. This data hungry
nature limits their application to a wide variety of domains and tasks, especially to scenarios
short of data and annotations. Pre-training, which obtains transferable representations or
models from upstream tasks with large-scale data to boost the performance on downstream
tasks, is one of the most common and practical solutions to the problem of data scarcity. In
this section, we will first review some important model architectures that have a great impact
on the transferability of pre-trained representations in Section 2.1. Then we elaborate on
how to gain knowledge of improved transferability via supervised pre-training on large-scale
labeled data in Section 2.2 and via unsupervised pre-training on much larger unlabeled data
in Section 2.3. Figure 3 overviews the recent cornerstones of pre-training methods.

2.1 Pre-Training Model

Pre-training has a big interplay with the model architecture. On the one hand, pre-training
techniques, such as greedy layerwise unsupervised pre-training (Bengio et al., 2007), have
eased the training of many deep architectures. On the other hand, as neural networks evolve
from shallow to deep, they have a larger capacity to capture knowledge by pre-training from
large-scale data, which increases their transferability to downstream tasks.

Model architecture has a great influence on the transferability of knowledge obtained via
pre-training. Kornblith et al. (2019) find that the performance of the pre-trained models on
the downstream tasks is highly correlated with the accuracy on the pre-training tasks, which
suggests that improving the performance on the pre-training task serves as a direct way for
improving transferability. The depth of the architecture, or more precisely, the capacity of
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Figure 3: Cornerstones of pre-training methods for gaining knowledge of transferability.
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the model, is deemed the most critical factor to its transferability. However, training very
deep neural networks have remained a grand difficulty for decades. He et al. (2016) observe
a degradation of training accuracy by increasing the network depth, which implies that
deeper models are more difficult to optimize. Instead of fitting a desired mapping h(x) by
a few stacked layers, they proposed Residual Network (ResNet) to explicitly fit a residual
mapping δ(x) := h(x)− x and then recast the original mapping into δ(x) + x. As a result,
ResNet improves feature and gradient flows and enables end-to-end training of hundreds of
and even thousands of layers, allowing the capacity of pre-trained models to scale up easily.
Ioffe and Szegedy (2015) hypothesize that the optimization difficulty also comes from the
internal covariate shift caused by layerwise transformation. To stabilize training very deep
models, they proposed Batch Normalization (BatchNorm) (Ioffe and Szegedy, 2015), which
performs normalization for each training mini-batch within the architecture. This design is
extensively used by ResNet. Kolesnikov et al. (2020) find that BatchNorm is suboptimal for
transfer due to the requirement of distribution-dependent moving averaged statistics. They
proposed Big Transfer (BiT) to replace BatchNorm by GroupNorm (Wu and He, 2018),
which generates pre-trained models of strong performance on downstream tasks.

The pre-training paradigm also reshapes the design of model architectures. In classic
supervised learning, models usually have strong inductive bias such as the local connectivity
assumption in Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN).
A strong inductive bias makes pre-training of deep models more data-efficient and generalize
better when training data is scarce, yet on the other hand, it also limits the expressiveness
and transferability of the deep models when there is large-scale data for pre-training. Thus,
Transformer (Vaswani et al., 2017) removes the local connectivity assumption and models
the global dependencies between every two tokens. The connection weights are dynamically
computed by the self-attention mechanism and then the feature aggregation in Transformer
depends on these attentions calculated from the input sequence, while the token positions in
the sequence are encoded by positional embedding. Transformers are powerful for sequence
modeling in natural language processing, and Vision Transformer (ViT) (Dosovitskiy et al.,
2021) extends them to computer vision. ViT splits an image into fixed-size patches, linearly
embeds each of them, adds positional embeddings, and feeds the resulting sequence of vec-
tors to a standard Transformer encoder. In summary, Transformer makes least assumptions
on the structural information of data, which makes Transformer an expressive architecture
for storing the transferable knowledge extracted by pre-training on large amounts of training
data (Devlin et al., 2019; Radford et al., 2018).
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In some sense, pre-training provides a learned inductive bias for the downstream tasks
(Torrey and Shavlik, 2010). Many downstream tasks only have hundreds or thousands of
labeled samples, yet the pre-trained Transformers with hundreds of millions of parameters
can generalize well after fine-tuning on such small data. To explain this phenomenon, Agha-
janyan et al. (2021) empirically show that pre-training minimizes the intrinsic dimension
(Li et al., 2018), which measures the number of parameters required to closely approximate
the optimization problem. Further, an intrinsic-dimension generalization bound is given,
indicating that the pre-trained parameters implicitly affect the inductive bias of models
and a larger pre-trained model might correspond to a smaller allowed hypothesis space dur-
ing fine-tuning (see Figure 4). The success of Transformer reveals that as the amount of
pre-training data increases, the learned inductive bias is able to outperform the manually
designed inductive bias in terms of transferability.

2.2 Supervised Pre-Training

Supervised pre-training aims to obtain models on large-scale labeled data and then transfers
these models to boost downstream tasks (see Figure 5). Supervised pre-training is commonly
employed in computer vision, where image classification on ImageNet (Deng et al., 2009;
Russakovsky et al., 2015) is often used as the pre-training task. The pre-trained models can
be transferred to downstream tasks by reusing the representations from the feature generator
(Sermanet et al., 2013). Donahue et al. (2014) find that the generic visual representations
pre-trained on ImageNet outperforms many conventional feature descriptors on various
object recognition tasks. Yosinski et al. (2014) find that transferring the pre-trained models
by fine-tuning the whole models yields better generalization performance on new tasks.

generator head

labeling
function

! "

#

$#

%!"#

Figure 5: Standard supervised pre-training. The model is composed of a feature generator
and a task-specific head. The goal is to obtain a feature generator capturing transferable
knowledge from large-scale labeled data. After pre-training, the feature generator is adapted
to downstream tasks, while the task-specific head is usually discarded.

Among the factors that influence the transferability of pre-trained models, the quantity
and quality of the pre-training data might be the most important. BiT (Kolesnikov et al.,
2020) emphasizes that training on larger datasets is vital for better transferability. Yet the
data labeling is labor-exhaustive and time-consuming, which limits the possible size of the
annotation data. To break this limitation, Mahajan et al. (2018) explore Weakly Supervised
Pre-training (WSP) on IG-1B-Targeted, a dataset of billions of images with social media
hashtags. Yalniz et al. (2019) further explore web-scale Semi-Supervised Pre-training (SSP)
on YFCC100M, a dataset of billions of unlabeled images along with a relatively smaller set
of task-specific labeled data. These methods improve clearly against the counterpart trained
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with only clean labeled data and achieve stronger transfer performance. On the other hand,
Domain Adaptive Transfer (DAT) (Ngiam et al., 2018) studies the influence of data quality
and finds that using more data does not necessarily lead to better transferability, especially
when the dataset is extremely large. Thus, an importance weighting strategy is proposed
to carefully choose the pre-training data that are most relevant to the target task. Cui et al.
(2018) also find that pre-training on more similar upstream data improves transferability to
fine-grained downstream tasks. They propose to estimate domain similarity via the Earth
Mover’s Distance to choose proper pre-training data. Geirhos et al. (2019) find that models
trained supervisedly on ImageNet are biased towards textures in images, and propose to
pre-train with a Stylized ImageNet (SIN), which fixes the texture bias and encourages the
models to learn shape-based representations of better transferability.

While standard supervised pre-training is powerful when there are enough labeled data,
it still has drawbacks that may limit the transferability of the model. For instance, standard
supervised pre-trained models are vulnerable to adversarial examples (Goodfellow et al.,
2015), and Salman et al. (2020) enhance the adversarial robustness of the pre-trained models
to achieve better transferability. In addition, there are alternative pre-training methods for
improving the transferability of deep models. Section 2.2.1 will elaborate on meta-learning,
which aims to obtain pre-trained models that adapt to downstream tasks with less training
time and less training data. Section 2.2.2 will review causal learning, which aims to obtain
distributionally robust and generalizable pre-trained models.

2.2.1 Meta-Learning

Standard supervised pre-training gains transferable representations to boost the learning of
new tasks. However, it still requires to fine-tune the pre-trained models with hundreds or
thousands of labeled data and with many gradient updates when adapting to the new task.
In contrast, people have the ability to quickly adapt to different related new tasks with few
labeled data. Meta-learning, also known as learning to learn (Schmidhuber, 1987), aims to
pursue such kind of efficient transferability in the pre-training stage.

The core idea of meta-learning is to equip the model with some meta knowledge φ that
captures intrinsic properties of different learning tasks, which is called meta-training. When
facing a new task, the learned meta knowledge could help the target model θ adapt to the
task faster, which is called meta-testing. Meta-learning is based on a simple machine learning
principle that test and training conditions should be matched. As shown in Figure 6(a),
to simulate the fast adaptation condition during meta-testing, the meta-training data is
constructed into a collection of n learning tasks, and each task i ∈ [n] contains a training
setDtr

i for adaptation to this task and a test setDts
i for evaluation1. As shown in Figure 6(b),

the learning objective of meta-training is a bi-level optimization problem,

φ∗ = arg max
φ

n∑
i=1

logP (θi(φ)|Dts
i ), where θi(φ) = arg max

θ
logP (θ|Dtr

i , φ). (1)

Here the inner level optimization updates the model θ with the training set Dtr
i using meta

knowledge φ, and the outer level optimization evaluates the updated model with the test

1. Dts is a surrogate test set used during meta-training to simulate different tasks and improve the model.
It is different from the true test set in the general setting in machine learning.
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(b) Architecture

Figure 6: Learning setup and architecture for meta-learning. (a) Meta-learning consists of
two phases, meta-training and meta-testing. Meta-training gains meta knowledge φ from
training tasks to help the model θ adapt quickly to a new task in meta-testing, where each
task consists of a training set and a test set. (b) In the inner level optimization, the model θ
is updated with the training set Dtr

i using meta knowledge φ. In the outer level optimization,
the updated model is evaluated on the test set Dts

i to find better meta knowledge φ.

set Dts
i to find better meta knowledge of stronger transferability. The key to enhancing the

transferability of meta-learning methods is to design a proper form of meta knowledge.
Memory-Based Meta-Learning considers memory mechanisms as the meta knowl-

edge. A controller writes knowledge extracted from training data Dtr
i into the memory, and

reads from the memory to adapt the base learner θ to make predictions on test data Dts
i . The

parameter of the controller is updated to find transferable knowledge. Memory-Augmented
Neural Network (MANN) (Santoro et al., 2016) stores bound sample representation-class la-
bel information in the external memory, which can then be retrieved as features for making
predictions when a sample from the same class is presented. Meta Network (Munkhdalai
and Yu, 2017) designs another memory mechanism where a base learner provides informa-
tion about the status of the current task while the meta learner interacts with the external
memory to generate parameters for the base learner to quickly learn the new task. Memory-
based meta-learning methods improve transferability in various downstream tasks, such as
few-shot classification and reinforcement learning. However, they require a careful design of
the black-box architecture to incorporate the memory mechanism, and it is unclearer what
is stored and retrieved in the memory and why it helps adapt the model.

Optimization-Based Meta-Learning considers a good initialization of the model
as the meta knowledge. The motivation of Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) is to explicitly seek for an initialization that is most transferable for fine-tuning,
i.e., only a small amount of gradient steps and a few labeled data are needed for the model
to generalize to a new task. To learn such an initialization, for each sampled task i ∈ [n],
the model φ is first updated on its training data Dtr

i using one gradient step of size α,

θi = φ− α∇φL(φ,Dtr
i ). (2)

which mimics the situation of fine-tuning the model from the starting point of φ. As meta
knowledge, φ should have good transferablity, such that for all tasks i ∈ [n], the fine-tuned
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parameters θi could perform well on the test set Dts
i ,

min
φ

n∑
i=1

L(θi(φ),Dts
i ) =

n∑
i=1

L(φ− α∇φL(φ,Dtr
i ),Dts

i ). (3)

The meta knowledge of MAML is high-dimensional, hindering MAML from deeper models.
To tackle it, Meta Transfer (Sun et al., 2019a) uses standard pre-training for initialization
and performs meta-training with light-weight neuron operations (e.g. scaling and shifting
over tasks), which reduces the training tasks needed to acquire the meta knowledge. Raghu
et al. (2020) find that feature reuse of the backbone is the predominant reason for efficient
learning on downstream tasks with MAML. They thus propose the Almost No Inner Loop
algorithm, which performs inner loop updates and task adaptation only on the task-specific
head layer. Another limitation of MAML is that the fixed meta knowledge is globally shared
by all tasks. To break this, Latent Embedding Optimization (Rusu et al., 2019) performs
gradient-based meta-learning in a low-dimensional latent space, and learns data-dependent
latent embedding as meta knowledge to generate target model parameters. Yao et al. (2019)
perform Hierarchically Structured Meta-Learning over hierarchical tasks based on clustering
structures and learns to tailor transferable meta knowledge to different tasks.

While meta-learning methods enable fast model adaptation across tasks, they are weak
in transferring to data from different domains, and some sophisticated methods even perform
worse than standard pre-training baselines (Chen et al., 2019a). Thus, Omni-Training (Shu
et al., 2021a) incorporates both standard pre-training and meta-training in a framework
with a tri-flow architecture to equip the pre-trained model with both domain transferability
across different distributions and task transferability for fast adaptation across related tasks.

2.2.2 Causal Learning

It remains difficult for supervised pre-training to obtain a transferable representation that
generalizes well to an out-of-distribution (OOD) domain (Bengio et al., 2021). In contrast,
humans have the ability to adapt to different domains or new environments. Causal learning
aims to pursue such kind of extrapolated transferability in the pre-training stage.

The core idea of causal learning is to equip the model with some causal mechanisms
that capture independent and disentangled aspects of the complex real-world distributions.
When the distribution changes, only one or several causal mechanisms change, with others
remaining invariant, which could result in better out-of-distribution (OOD) generalization.
The causal mechanisms are described by Structural Causal Models. As shown in Figure 7,
causal mechanisms consider a set of variables as the vertices of a directed acyclic graph, and
each edge represents a mechanism of direct causation in that the parents directly affect the
assignment of the child. This induces a canonical factorization of the joint distribution of
these variables into the disentangled distribution of them conditioned on their parents. The
independent causal mechanism principle states that given its mechanism, the conditional
distribution of each variable does not inform or influence the other mechanisms (Schölkopf
et al., 2012; Peters et al., 2017). This implies that small distribution changes should only
affect the causal mechanisms along with the disentangled factorization in a sparse and local
way (Schölkopf et al., 2021), thereby enabling transferability towards different distributions.
The key problem of causal learning is to obtain the variables governed by independent causal
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Figure 7: Causal mechanisms consider a set of observations or variables as the vertices of
a directed acyclic graph, where each edge corresponds to a mechanism of direct causation.
Causal learning seeks a model with variables governed by certain causal mechanisms, and if
the environment or distribution changes, only part of the causal mechanisms will be affected.

mechanisms. One way is to explicitly introduce independence with the modular models.
Another common practice is to leverage the invariance assumption that causal relationships
remain invariant across distributions.

Modular Model. Recurrent Independent Mechanism (RIM) (Goyal et al., 2021) takes
a modular model composed of several modules of different functions, where each module is a
recurrent cell such as LSTM or GRU (Cho et al., 2014) and represents a causal mechanism.
To obtain independence in distinct modules, RIM introduces attention between the hidden
states of each module and the current inputs. For specific inputs, only the most relevant
modules with larger attention are activated and updated, which forms competition between
different modules and encourages their independence. RIM is shown to capture independent
causal mechanisms and generalize well over different temporal patterns.

Invariant Learning. The invariance assumption indicates that the conditional proba-
bility of the target output given its direct cause should be invariant across all environments
or distributions. Invariant Causal Prediction (ICP) (Peters et al., 2016) uncovers indepen-
dent causal mechanisms by performing a statistical test to find the subset of the variables
satisfying the invariance assumption. Invariant Risk Minimization (IRM) (Arjovsky et al.,
2019) extends this idea to representation learning and learns a good representation such
that the conditional probability of the target output given the representation should be
invariant across training environments. Formally, given a data representation ψ : X → Z
and training environments Etr, the conditional probability between the representation and
the output is invariant if there is a classifier h : Z → Y simultaneously optimal for all the
environments. This can be formalized as the following constrained optimization problem,

min
ψ:X→Z,h:Z→Y

∑
e∈Etr

εe(h ◦ ψ), subject to h ∈ arg min
h̄:Z→Y

εe(h̄ ◦ ψ), for all e ∈ Etr, (4)

where εe(h◦ψ) refers to the expected error of the predictor h◦ψ on the environment e. The
transferability across environments relies on how the invariance across training environments
implies invariance across all environments. Thus, the diversity of training environments is
important for gaining transferability. IRM can be extended to complex situations where the
causal relations are defined on some latent variables that need to be extracted from data.

13



Jiang et al.

2.3 Unsupervised Pre-Training

Being a canonical successful approach, supervised pre-training still requires a large amount
of labeled data which are expensive to annotate and only available in certain fields. This
hinders pre-training on huge-scale data and limits its transferability to particular tasks.
To break this shackle, unsupervised learning (Bengio, 2012), typically in the form of self-
supervised learning, is used for pre-training on very large unlabeled data to acquire generally
transferable knowledge. To improve the transferability on downstream tasks, it is crucial to
design a proper self-supervised task for pre-training. According to the type of task, we can
divide common unsupervised pre-training methods into generative learning and contrastive
learning, which will be discussed in Sections 2.3.1 and 2.3.2 respectively.

2.3.1 Generative Learning

Generative learning is underpinned by the idea of learning to generate data distribution
P (X) for unsupervised pre-training. It aims to learn the intrinsic representation in data
and has been commonly used for pre-training deep neural networks (Bengio et al., 2007). As
shown in Figure 8, we employ an encoder fθ that maps the perturbed input x̃ into a latent
representation z = fθ(x̃) and a decoder gθ that maps the representation back to derive a
reconstructed version of the input x̂ = gθ(z). The model is then optimized by minimizing
the reconstruction error Lgen(x̂,x). Most generative pre-training methods are based on two
models: Autoregressive Model, which generates future inputs given only past inputs, and
Autoencoding Model, which generates full inputs given partial inputs.
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Figure 8: Generative pre-training tries to reconstruct the original input x from a perturbed
input x̃. The generative learning task shall encourage the learned representation z to capture
the intrinsic and transferable explanatory factors from the data.

Autoregressive Model approximates the distribution of a sequence by predicting each
entry conditioned on its previous context, which is called Language Modeling (LM) task
in NLP. As shown in Figure 9, given a text sequence x1:T = [x1, x2, ..., xT ], the learning
objective of LM is to maximize the conditional probability of each entry xt,

max
θ

T∑
t=1

logPθ(xt|xt−k, · · · , xt−1), (5)

where k is the size of the context window and θ is the parameter of the neural network.
Generative Pre-Training (GPT) (Radford et al., 2018) explores unsupervised pre-training
of Transformer with LM on the BooksCorpus (Zhu et al., 2015) dataset with over 7000
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unpublished books. This equips the model with great transferability to various NLP tasks,
such as question answering, commonsense reasoning, and so on. The advantage of LM is
that it models the context dependency while the drawback is that it only encodes contextual
information from one direction, yet contextual representations encoded in both directions
may be more suitable to many downstream tasks, such as natural language inference.

Autoencoding Model approximates the data distribution by generating original data
from encoded representations. Vincent et al. (2008) hypothesize that a good representation
should also be robust to partial corruption of the input. Thus Denoising Autoencoder (Vin-
cent et al., 2008) is trained to reconstruct the original input x with the corrupted input
x̃. Inspired from Denoising Autoencoder, BERT (Devlin et al., 2019) adopts the Masked
Language Modeling (MLM) task as a pre-training task to overcome the drawback of the
unidirectional LM. As shown in Figure 9, MLM first randomly masks out some tokens
m(x) from the input sentences x with a special [MASK] token and then trains the models
to predict the masked tokens by the rest of the tokens x\m(x),

max
θ

∑
x∈m(x)

logPθ(x|x\m(x)). (6)

Masked pre-training has also been used in many other areas. For instance, Masked Au-
toencoders (MAE) (He et al., 2021) pre-trains vision transformers on large-scale unlabeled
image datasets using the image generation task. The difficulty is that the signals are highly
redundant in images, thus it is hard for generative tasks, such as filling a few missing pixels,
to capture high-level knowledge from data. To tackle this issue, MAE randomly masks a
very large portion of patches, forcing the model to go beyond low-level understanding and
reconstruct the whole image based on a small subset of visible patches, which improves
its transferability to semantic-level tasks. For another instance, to pre-train Graph Neu-
ral Network (GNN) (Garcia and Bruna, 2018) for transferable representations, Attribute
Masking (Hu et al., 2020) conceals node or edge attributes and asks GNNs to predict those
attributes based on neighboring structures, which can capture the regularities of attributes
distribution over different graph structures, such as the chemistry rules in molecular graphs,
and improve transferability on the downstream node or edge classification tasks.
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Figure 9: Attention visibility in Transformer (Trm) for language models. (a) LM maximizes
the probabilities of all words conditioned on their previous words. (b) MLM maximizes the
probabilities of random masked words conditioned on all unmasked words. (c) PLM per-
mutes the original sequence and then performs autoregression. (d) Seq2Seq MLM encodes
the input masked sequence x and then decodes the output masked tokens y sequentially.
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Combining Autoregressive and Autoencoding Models. In MLM, some special
tokens, such as [MASK], are only used in pre-training while absent in the downstream tasks,
leading to the mismatch between the pre-training phase and the fine-tuning phase. To mit-
igate this discrepancy, Permuted Language Modeling (PLM) (Yang et al., 2019) randomly
samples a permutation of the sequence and then performs autoregression on the permuted
sequence to predict the last few tokens. To explore the limits of transferability of knowledge
gained in different generative pre-training methods, T5 (Raffel et al., 2020) unifies all text-
based language tasks into the text-to-text format and then adopts a Sequence-to-Sequence
MLM (Seq2Seq MLM), where the encoder processes a masked sequence and the decoder
sequentially generates the masked tokens in an autoregression manner.

The design of unsupervised pre-training tasks has a great influence on the transferability
to the downstream tasks, thus many efforts have been made to optimize the pre-training
tasks and exploit better training objectives. RoBERTa (Liu et al., 2019b) explores the
under-training issue of BERT and highlights that training with more data, longer sequences,
and dynamically changed masking patterns helps the model transfer better. Besides, MLM
randomly masks out some independent words, which are the smallest semantic units in
English but may not have complete semantics in other languages, such as Chinese. Thus,
ERNIE (Baidu) (Sun et al., 2019b) introduces entity-level and phrase-level masking, where
multiple words that represent the same semantic meaning are masked. This achieves good
transferability on Chinese NLP tasks. To improve transferability to tasks where span selec-
tion is important, such as question answering and coreference resolution, SpanBERT (Joshi
et al., 2020) masks a random variable length of span in the text and trains the span boundary
representations to predict the entire content of the masked span. BART (Lewis et al., 2020)
introduces more perturbation functions such as sentence permutation, document rotation,
token deletion, and text infilling for more transferable pre-trained models.

The generative pre-training on large-scale data greatly improves the transferability of
models and even enables few-shot task transfer. By scaling up the model size to 175B
and pre-training on the corpus over 500GB, GPT-3 (Brown et al., 2020) obtains impressive
transferability. Using only task demonstrations and a few examples, GPT-3 achieves better
performance than prior state-of-the-art fine-tuning approaches on some tasks. The success
of GPT-3 comes from the fact that the web-scale corpus contains a vast amount of natu-
ral language sentences, which potentially demonstrate different tasks without explicit task
symbols. A high-capacity language model trained on such data would perform unsupervised
multi-task learning and absorb transferable knowledge to handle downstream tasks. The
generative pre-training on large-scale data also improves the transferability across domains.
Multilingual BERT (Pires et al., 2019) is pre-trained with MLM on Wikipedia texts from
104 languages and then achieves great cross-lingual transferability in the downstream tasks,
where each language can be considered as a domain. Further, XLM (Lample and Conneau,
2019) introduces the translation language modeling task, which extends MLM to parallel
bilingual sentence pairs, encouraging more transferable representations across language.

2.3.2 Contrastive Learning

Contrastive learning utilizes the idea of learning to compare for unsupervised pre-training.
As shown in Figure 10, two different views, query xq and key xk, are constructed from the
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original data x. Encoders will map different views into latent representations and decoders
will further map the representation to the metric space. The model is learned by minimizing
the distance between query and key of the same instance. We will review three typical con-
trastive learning methods widely used in pre-training: Mutual Information Maximization
(uses the global context and the local features as different views), Relative Position Predic-
tion (uses different local components as different views), and Instance Discrimination (uses
data augmentations to generate different views of the same instance). Different ways of
generating and comparing different views encourage these methods to respectively capture
the global-local relation, local-local relation and global-global relation of the training data.
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Figure 10: Contrastive pre-training aims to minimize the similarity between the query q
and the key k that are generated from different views of the same data input x.

Mutual Information Maximization. Deep InfoMax (Hjelm et al., 2019) aims to ac-
quire transferable representations from the relation between the high-level global context
and the low-level local features. Given input x, Deep InfoMax learns an encoder ψ to maxi-
mize the mutual information between its input and output of the same instance. The mutual
information can be estimated and bounded by training a discriminator to distinguish be-
tween their joint distribution and the product of their marginals. Using Noise-Contrastive
Estimation (NCE), the training objective of Deep InfoMax becomes,

max
ψ

Ex∼U

[
D(x, ψ(x))− E

x′∼Ũ

(
log
∑
x′

eD(x′,ψ(x))
)]

, (7)

where x is the input sampled from the training distribution U of upstream task, x′ is an-
other input sampled from Ũ = U , and D is the discriminator to distinguish between the joint
distribution and the product of marginals. A parallel work, Contrastive Predictive Coding
(CPC) (Oord et al., 2019), also maximizes the mutual information between pairs of global
representation and local representation. Given a sequence input, CPC processes it with an
encoder and summarizes the results into a context by an autoregression model. Then it
maximizes the mutual information between the summarized context and the hidden repre-
sentation of the future observation in the sequence, which guides the learned representations
to capture information for predicting future samples.

Mutual information maximization has been used to obtain pre-trained models on many
data formats, such as Deep InfoMax on image data and CPC on sequence data. On graph
data, Deep Graph Infomax (Veličković et al., 2019) maximizes the mutual information be-
tween a node’s local representations and the k-hop neighborhoods’ context representations.
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On multimodal data, Contrastive Language-Image Pre-training (CLIP) (Radford et al.,
2021) maximizes the mutual information between the image and the corresponding text
in a multimodal embedding space. After training with a large-scale dataset of image-text
pairs from the Internet, it enables the zero-shot transfer of the model to downstream tasks,
competitive with the prior task-specific supervised models.

Relative Position Prediction. Next Sentence Prediction (NSP) (Devlin et al., 2019),
which is first introduced in BERT, acquires transferable representations from the relation
between local parts. Specifically, NSP uses a binary classifier to predict whether two sen-
tences are coherent from the training corpus, aiming to enhance the transferability to tasks
with multiple sentences, such as question answering and natural language inference. How-
ever, subsequent work questions the necessity of NSP tasks (Yang et al., 2019; Liu et al.,
2019c) and Lan et al. (2020) conjecture that NSP only forces the model to learn topic pre-
diction, rather than more difficult coherence prediction. Since inter-sentence coherence is
important to many downstream tasks, ALBERT (Lan et al., 2020) introduces a sentence-
order prediction task, where two consecutive segments from the same document are taken
as positive examples, and the same segments with order swapped are taken as negative
examples. Similar ideas are also explored in vision, where the pre-training task is to predict
relative positions of two patches from an image (Doersch et al., 2015).

Instance Discrimination. InstDisc (Wu et al., 2018) aims to learn transferable repre-
sentations from the relation between instances. Given n instances, an encoder ψ is trained
to distinguish each instance from others, i.e., minimize the distance between the query q
and key k+ from the same instance (also called positive samples) and maximize the distance
between that of different instances (also called negative samples),

min
ψ
− log

exp(q · k+/τ)∑K
j=0 exp(q · kj/τ)

, (8)

where τ is a temperature hyper-parameter and the sum is over one positive and K negative
samples. Note that the computation of the features of all samples and the non-parametric
softmax is costly especially when the number of training instances n is extremely large. To
tackle this issue, negative sampling is used to approximate the softmax, i.e., K < n.

The discriminability of representations to contrast one instance from another instance
is closely related to the transferability on downstream tasks. Thus, many efforts have been
made to increase the number and improve the quality of keys. As shown in Figure 11, Inst-
Disc (Wu et al., 2018) uses a memory bank to store the latest updated representations for
each key, which increases the number of negative samples, yet may result in less consistent
representations. Momentum Contrast (MoCo) (He et al., 2020) maintains a dynamic queue
of encoded features to enlarge the size of negative samples and encodes the keys with a
momentum-updated encoder, which increases encoding consistency between different sam-
ples in the queue and improves the quality of keys. The way how the positive samples and
negative samples are constructed is also important for transferability. Contrastive Multiview
Coding (CMC) (Tian et al., 2020) takes multiple views, rather than multiple augmentations,
of the same instance as positive samples and achieves better transferability. SimCLR (Chen
et al., 2020) emphasizes that data augmentations play a crucial role in implicitly defining
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Figure 11: Comparison of different contrastive learning mechanisms. (a) InstDisc samples
the keys from a memory bank. (b) MoCo encodes the new keys on the fly by a momentum
encoder and maintains a queue of keys. (c) SimCLR encodes the keys and queries in the same
batch with the same encoder and adds a nonlinear predictor to improve the representation.
(d) SimSiam applies an MLP predictor on one side and applies a stop-gradient operation
on the other side, and maximizes the similarity in two views without using negative pairs.

different pretext tasks, and the composition of stronger augmentations leads to better trans-
ferability even without the need for a memory bank or a queue. The introduction of negative
samples is to avoid trivial solutions that all outputs collapse to a constant. However, BYOL
(Grill et al., 2020) finds that when maximizing the similarity between two augmentations
of one image, negative sample pairs are not necessary. Further, SimSiam (Chen and He,
2021) finds that momentum encoder is also not necessary while a stop-gradient operation
applied on one side is enough for learning transferable representations.

Compared with supervised pre-training, contrastive pre-training leads to competitive
performance on downstream classification tasks and even better performance on various
other downstream tasks, such as object detection and semantic segmentation. To explain the
stronger transferability of contrastive pre-training, Zhao et al. (2021) observe that standard
supervised pre-training usually transfers high-level semantic knowledge, while contrastive
pre-training usually transfers low-level and mid-level representations. When the target tasks
are different from the supervised pre-trained tasks, the supervised pre-training methods
have the risk of over-fitting the semantic discriminative parts of objects defined by the class
labels, which hurts the transferability. On the contrary, the contrastive pre-training tasks
lead to more holistic modeling of the objects, which relaxes the task misalignment issue and
achieves better transferability for widespread downstream tasks.

2.4 Remarks

While standard supervised pre-training is well established, its transferability also depends on
the relationship between the pre-training task and the target task, and no pre-training task
can dominate all downstream tasks. He et al. (2019) show that compared with the random
initialization, supervised pre-training on ImageNet only speeds up the convergence of object
detection on the COCO dataset, but does not lead to better final accuracy. Raghu et al.
(2019) observe similar phenomena in medical imaging, where training lightweight models
from scratch perform comparably with transferring from ImageNet pre-trained models.
Abnar et al. (2022) explore the limits of large-scale supervised pre-training and find that
as the pre-training accuracy increases by scaling up data, model size and training time,
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the performance of downstream tasks gradually saturates and there are even some extreme
scenarios where performance on pre-training and downstream tasks are at odds with each
other. These controversial results encourage us to rethink the common practice of supervised
pre-training and design new supervised pre-training strategies for specific fields, especially
when large gaps exist between the pre-training and target tasks.

Table 2: Comparison between different pre-training methods.

Method Modality Scalability1 Task Scalability2 Data Efficiency3 Labeling Cost4

Standard Pre-Training FFF FF FFF F

Meta-Learning FFF F F F

Causal Learning FF F F F

Generative Learning FF FFF FFF FFF

Contrastive Learning F FFF FFF FFF

1 Modality Scalability: whether models can be pre-trained on various modalities, such as text, graph.
2 Task Scalability: whether pre-trained models can be easily transferred to different downstream tasks.
3 Data Efficiency: whether stronger transferability can be yielded from large-scale pre-training.
4 Labeling Cost: whether relies on manual data labeling.

Table 2 compares pre-training methods from four perspectives: modality scalability, task
scalability, data efficiency, and labeling cost. Though meta-learning enables fast adaptation
to new tasks, it mainly considers related tasks such as reinforcement learning under envi-
ronments with small changing factors, while standard pre-training can transfer to broader
task gaps such as from image classification to object detection. Besides, the existing meta-
learning and causal learning methods are empirically verified only on small datasets, and it
remains unclear whether they can acquire stronger transferability via pre-training on large-
scale data. Despite the promising performance without manual labeling, unsupervised pre-
trained models require a large number of gradient steps for fine-tuning to downstream tasks.
Also, strong data augmentations are required by contrastive learning to gain transferability,
but they are not easy to design in other modalities, such as text and graphs. Finally, the
design of unsupervised pre-training tasks remains heuristic, lacking solid analysis on how
the task shift is bridged and what enables the transferability of these models.

Acquiring transferability only through the pre-training stage may limit our horizon. As
the shift in tasks and domains naturally exists between the pre-training and adaptation
stages, many pre-training methods are tailored to adaptation. Unsupervised pre-training
aims to improve the transferability to downstream tasks by exploring different kinds of self-
supervised tasks to reduce the task discrepancy between pre-training and adaptation, or by
enlarging the size and diversity of the upstream data to reduce the upstream-downstream
discrepancy. The distribution shift commonly tackled by domain adaptation (Ganin and
Lempitsky, 2015) also influences the transferability of the pre-trained model. For instance,
the data distribution in a specific domain, such as biological and scientific literature, is quite
different from that in the general pre-training domain and may degrade transferability, thus
BioBert (Lee et al., 2020b) and SciBERT (Beltagy et al., 2019) perform pre-training on
domain-specific data to improve the transferability on domain-specific tasks.
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3. Adaptation

While pre-training on large-scale datasets can gain transferable knowledge in deep models,
performing task adaptation with the target data is still necessary for most applications, as
the target task is usually different from the pre-training task. When the labeled data for
the target task is not enough, domain adaptation from a related source domain with labeled
data to boost the performance on the target domain is also necessary in many applications.
We will review task adaptation and domain adaptation in Sections 3.1 and 3.2 respectively.

3.1 Task Adaptation

In task adaptation, there exist a pre-trained model hθ0 and a target domain T̂ = {xi,yi}mi=1

of m labeled samples. The goal is to find a hypothesis hθ : X 7→ Y in the space H using the
pre-trained model and target data to achieve a low generalization risk εT (hθ). In general,
there are two simple ways to adapt a pre-trained model to the downstream tasks: feature
transfer and fine-tuning. Feature transfer freezes the weights of the pre-trained models and
trains a linear classifier on top of that. In contrast, fine-tuning uses the pre-trained models
to initialize the target model parameters and update these parameters during training.
Feature transfer is fast in training and efficient in parameter storage, yet fine-tuning yields
better performance (Yosinski et al., 2014), and has become a common practice for task
adaptation in both vision and NLP (Girshick et al., 2014; Devlin et al., 2019).

Vanilla fine-tuning, which tunes the pre-trained models by empirical risk minimization
on the target data, has been widely used in various downstream tasks and scenarios. How-
ever, vanilla fine-tuning still suffers from several issues, including catastrophic forgetting and
negative transfer. We will introduce how to alleviate these issues in Sections 3.1.1 and 3.1.2.
Besides, as the parameters of deep models keep increasing and some of them reach billions
or trillions, parameter efficiency and data efficiency have become increasingly important in
task adaptation. We will give an introduction on how to explore the transferability in the
pre-trained models to solve these problems in Sections 3.1.3 and 3.1.4. Overall, Figure 12
shows the progress made by the task adaptation algorithms to solve different problems.
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Figure 12: Cornerstones of task adaptation methods for applying transferable knowledge.

21



Jiang et al.

3.1.1 Catastrophic Forgetting

Catastrophic forgetting, which was first studied in lifelong learning, refers to the tendency
of neural networks to lose knowledge acquired from previous tasks when learning new tasks
(Kirkpatrick et al., 2017). In the fine-tuning scenario where labeled data is usually scarce,
it will lead to the overfitting of models on the target data. This phenomenon is also called
representational collapse, i.e., the degradation of generalizable representations during the
fine-tuning stages (Aghajanyan et al., 2021). The most simple way to avoid catastrophic
forgetting might be selecting a small learning rate and adopting an early-stopping strategy,
which avoids updating the parameters too much. However, this strategy may lead the
model to falling into the local minimal, especially when there is a large gap between the
pre-training parameters and the optimal parameters for the downstream task.

Yosinski et al. (2014) find that the transferability of different layers is not the same —
the first layers learn general features, the middle layers learn semantic features and the last
layers learn task-specific features. Thus, to make the model retain the knowledge acquired in
the pre-training task and fit the target task well at the same time, different layers should not
be treated the same. Specifically, the first layers should retain more pre-trained knowledge
while the last layers should adapt more to the downstream tasks. Inspired by this finding,
DAN (Long et al., 2015) sets the learning rate of the task-specific head to be 10 times larger
than that of the lower layers, which is simple yet effective when the labeled data is scarce
or the target domain is close with the pre-training domain. ULMFiT (Howard and Ruder,
2018) gradually unfreezes the model starting from the last layers to the first layers, which
effectively retains general knowledge in the first layers. To automatically determine which
layers should be fine-tuned or frozen for each sample, Spottune (Guo et al., 2019) proposes
a policy network that is deployed to output the routing decision based on the input of each
sample and is jointly trained with the main model during fine-tuning.

Domain Adaptive Tuning reveals that an important source of catastrophic forgetting
is the dataset shift between the pre-training and the target domain. To bridge such shift,
ULMFiT (Howard and Ruder, 2018) and DAPT (Gururangan et al., 2020) first tune the
pre-trained model on data related to the target domain, or simply data of the target task,
with the pre-training task. Then they fine-tune the adaptive-tuned model on the target
task (Figure 13). Usually, the pre-training task is unsupervised, thus further pre-training
with in-domain data can provide rich information about the target data distribution for
better task adaptation with no additional labeling costs. The two stages, domain adaptive
tuning and regular fine-tuning, in the above methods can also be done jointly via multi-
task learning. SiATL (Chronopoulou et al., 2019) adds an auxiliary language model loss to
the task-specific optimization function, which alleviates catastrophic forgetting and learns
task-specific features at the same time.

Regularization Tuning is another way to prevent the models from deviating far away
from the pretrained ones. The optimization objective with a general regularization is

min
θ

m∑
i=1

L(hθ(xi),yi) + λ · Ω(θ), (9)

where L is the loss function, Ω is a general form of regularization, and λ is the trade-
off between them. A typical regularization in supervised learning is L2 penalty, Ω(θ) =
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Figure 13: Domain Adaptive Tuning often consists of two consecutive steps: first, adaptive-
tune on an auxiliary domain T ′ that is related to the target domain using the pre-training
task; second, fine-tune on the target domain T using the target learning task.

1
2 ||θ||22, which drives the weights θ to zero to control the model complexity. Different from
typical supervised learning, in fine-tuning, there exists a pre-trained model hθ0 setting a
reference that can be used to define the hypothesis space (Figure 4). Thus, Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017) constrains the distance between the weights
of the pre-trained and fine-tuned networks (Figure 14) to overcome catastrophic forgetting,

Ω(θ) =
∑
j

1

2
Fj
∥∥θj − θ0

j

∥∥2

2
, (10)

where F is the estimated Fisher information matrix. EWC is based on the assumption
that the networks with similar weights should produce similar outputs. However, due to
the complex structures of deep networks, similar parameters do not necessarily produce
the same output, and the same output may also come from completely different model
parameters. Thus, DELTA (Li et al., 2019) constraints the behavior, i.e., the feature maps
of the model by selecting the discriminative features with a supervised attention mechanism
and regularizing the distance of these features between pre-trained and fine-tuned networks.
Learning Without Forgetting (LWF) (Li and Hoiem, 2018) constrains the output prediction
of the model by encouraging the model’s response for old tasks to keep the same throughout
the fine-tuning process (Figure 14). Regularization on the output often performs better than
regularization on the parameters or the features, yet the latter two have better scalability
and versatility to more complex downstream tasks.
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Figure 14: Regularization methods for task adaptation that avoids catastrophic forgetting.
Blue: pre-trained parameters; Red: fine-tuned parameters. (a) EWC regularizes the param-
eters of the new models θ and that of the pre-trained models θ0 with weighted L2-penalty.
(b) DELTA regularizes the feature maps of the new models z and that of the pre-trained
models z0. (c) LWF enforces the output of the old tasks ŷ0 close to the initial response y0.
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An explanation for the effect of regularization is that it makes the hypothesis smoother.
Therefore, TRADES (Zhang et al., 2019a) and SMART (Jiang et al., 2020) directly enforce
the smoothness of the hypothesis by encouraging the output of the model to not change
much when injecting a small perturbation to the input,

Ω(θ) =
m∑
i=1

max
||x̃i−xi||p≤ε

Ls(hθ(x̃i), hθ(xi)), (11)

where ε > 0 is a small positive, Ls is the distance between two predictions, such as the
symmetrized KL-divergence in classification and the squared loss in regression.

Apart from the training objective, an alternative regularization approach is through
the parameter updating strategy. Stochastic Normalization (Kou et al., 2020) randomly
replaces the target statistics in the batch-normalization layer (Ioffe and Szegedy, 2015)
with their pre-trained statistics, which serves as an implicit regularization by avoiding over-
depending on the target statistics. Mixout (Lee et al., 2020a) randomly replaces part of the
model parameters with their pre-trained weights during fine-tuning to mitigate catastrophic
forgetting. Child-Tuning (Xu et al., 2021) selects a subset of parameters (child network) by
some criterion and only updates them during fine-tuning. In some senses, the above methods
decrease the hypothesis space to preserve the transferability in pre-trained models.

3.1.2 Negative Transfer

Although the paradigm of pre-training and fine-tuning has been used in various downstream
tasks, it does not necessarily produce a positive effect, which is known as negative transfer
(Rosenstein, 2005). Wang et al. (2019d) propose to quantitatively measure the degree of
negative transfer across different domains and we extend this idea to the paradigm of pre-
training and fine-tuning.

Definition 2 (Negative Transfer Gap) Let hθ(U , T ) be a hypothesis obtained by adapt-
ing the model pre-trained from the upstream data U to the target data T , and hθ(∅, T ) be a
hypothesis obtained by training from scratch on T , then negative transfer gap is defined as

NTG = εT (hθ(U , T ))− εT (hθ(∅, T )), (12)

and negative transfer occurs if NTG is positive and vice versa.

First, negative transfer will happen when the relatedness between the upstream task
and downstream task is not strong, e.g. Next Sentence Prediction pre-training task will hurt
token-level classification tasks (Liu et al., 2019b). Negative transfer will also happen when
there is a large shift between the pre-training domain and the target domain, e.g. for legal
documents classification, pre-training only on legal documents is better than pre-training
on more diverse datasets (Zheng et al., 2021). Second, negative transfer depends on the size
of the labeled target dataset (Wang et al., 2019d). For example, He et al. (2019) empirically
show that on large-scale object detection datasets (e.g. COCO), ImageNet pre-training is
not beneficial when training for enough iterations. Third, negative transfer depends on the
task adaptation algorithms. An ideal adaptation algorithm should promote positive transfer
between related tasks while avoiding negative transfer between unrelated tasks. In practice,
however, these two goals are often contradictory and result in the dilemma: approaches that
promote larger positive transfer will suffer from severer negative transfer (Figure 15).
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Figure 15: Dilemma to promote positive transfer and avoid negative transfer: Aggressive
strategies that promote larger positive transfer will suffer from severer negative transfer;
Conservative strategies can decrease negative transfer, yet lead to smaller positive transfer.

Enhancing Safe Transfer. One way to avoid negative transfer is to recognize and re-
ject harmful knowledge in the pre-trained model. Chen et al. (2019b) observe that with
sufficient training data, the spectral components with small singular values vanish dur-
ing fine-tuning, indicating that small singular values correspond to detrimental pre-trained
knowledge and may cause negative transfer. Thus BSS penalizes smaller singular values to
suppress untransferable spectral components for safe transfer. Jang et al. (2019) meta-learns
the weights determining which pairs of layers should be matched and to what extent the
knowledge should be transferred, which rejects irrelevant information during transfer. Zoo-
tuning (Shu et al., 2021b) enables adaptive transfer from a zoo of models, which adaptively
aggregates multiple pre-trained models to derive the target model using data-dependent
gating mechanisms to highlight transferable parameters. Another way to mitigate negative
transfer of the pre-trained model is to fully explore the target data. Self-Tuning (Wang et al.,
2021) proposes a pseudo group contrastive mechanism to explore the intrinsic structure of
the target data in the process of fine-tuning with standard supervised objective.

Choosing Pre-trained Models. With the fast development of deep learning, a large zoo
of pre-trained models are available, thus a simpler way to avoid negative transfer is to select a
model that is pre-trained on the upstream data/task relevant to the downstream data/task.
The most common practice to choose pre-trained models is based on rich past experience or
through heavy experiments. To facilitate faster selection, Taskonomy (Zamir et al., 2018)
proposes a fully computational approach for explicitly modeling the relationship between
26 different visual tasks. Another more efficient strategy to select pre-trained models is to
predict the transferability of pre-trained models. LEEP (Nguyen et al., 2020) constructs
an empirical predictor by estimating the joint distribution over pre-trained labels and the
target labels, and then uses the log expectation of the empirical predictor to measure the
transferability. LogME (You et al., 2021) proposes to predict the fine-tuning performance
from the compatibility of features {zi = ψ(xi)}mi=1 and labels {yi}mi=1. Still, these methods
may underestimate strong but non-linear features. He et al. (2021) show that features from
contrastive pre-training, such as MoCo v3 (Chen et al., 2021a), have higher linear probing
accuracy while worse fully fine-tuning results than generative pre-training, such as MAE
(He et al., 2021), indicating that the linear separability of the pre-trained features is not
the sole metric for evaluating transferability.
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Figure 16: Comparison on how different adaptation methods freeze (blue) and tune (red)
pre-trained parameters. (a) Feature transfer freezes all the pre-trained parameters. (b)
Fine-tuning re-trains all the pre-trained parameters. (c) Side-tuning trains a lightweight
conditioned side network that is fused with the fixed pre-trained network using summation.
(d) Adapter-Tuning inserts adapter modules for tuning into each frozen pre-trained layer.

3.1.3 Parameter Efficiency

Fine-tuning large pre-trained models yields strong performances on many downstream tasks
(Radford et al., 2018; Devlin et al., 2019), yet it is not parameter efficient since it generates
a full set of model parameters for each downstream task, which will cause unacceptable
storage cost as the number of tasks increases. The simplest solution is Multi-task Learning
(Caruana, 1997), i.e., fine-tuning a single model to solve multiple target tasks, which might
be mutually beneficial to each other (He et al., 2017; Liu et al., 2019a). Yet when different
target tasks are weakly related, multi-task learning will underperform fine-tuning for each
task separately. Also, multi-task learning requires simultaneous access to all target tasks,
which is not feasible in online scenarios where the target tasks arrive in sequence. Hereafter,
we will introduce new tuning paradigms proposed to improve parameter efficiency.

Residual Tuning. Inspired by the fact that approximation to a difference is easier than
the original function (He et al., 2016), Side-Tuning (Zhang et al., 2019b) adds a small side
network hside to adapt the frozen pre-trained model hpretrained for the target task and obtain
a combined model h(x) = αhpretrained(x) + (1−α)hside(x), where α is a weight that changes
during training. When there is a big gap between the pre-trained model and the downstream
task, it may be difficult to learn the residuals of the entire model. Thus, Adapter Tuning
(Houlsby et al., 2019) inserts residual adapter modules into each frozen layer. Residual
Adapter was first introduced for learning multiple visual domains (Rebuffi et al., 2017) and
consists of a skip connection, such that it is set as a near-identity function and will not
impair the whole model when the training starts. By choosing a much smaller amount of
parameters for the adapters, Adapter Tuning can extend pre-trained models to new tasks
without increasing much storage cost. Houlsby et al. (2019) find that Adapter Tuning with
only 3.6% tunable parameters can match the performance of the fully fine-tuned BERT on
the GLUE benchmark (Wang et al., 2019a), revealing the great potential of this method.

Parameter Difference Tuning. While residual adapter tuning changes the model acti-
vations by adding new modules, parameter difference tuning extends the pre-trained models
through a task-specific parameter difference vector,

θtask = θpretrained ⊕ δtask, (13)
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where ⊕ is the element-wise addition function, θpretrained is the fixed pre-trained parameters
and δtask is the tuned task-specific difference vector. Instead of storing a copy of θtask for
every task, difference tuning only needs to store a single copy of θpretrained and a copy of δtask

for every task. As long as the size of δtask can be reduced, we can achieve parameter efficient
models. To this end, Diff Pruning (Guo et al., 2021) utilizes L0-norm penalty (Louizos
et al., 2018) to encourage sparsity of the difference vector δtask. Aghajanyan et al. (2021)
adopt FastFood transform M (Li et al., 2018) to convert δtask into a low-dimensional vector
δlow, i.e., δtask = δlowM . The element-wise addition can also be replaced by element-wise
multiplication. For instance, Piggyback (Mallya and Lazebnik, 2018) multiplies real-valued
mask weights to the pre-trained parameters, i.e., θtask = θpretrained � δtask during training.
After training, the mask weights δtask are passed through a thresholding function to obtain
binary-valued masks, further reducing the parameter storage of δtask at inference.

The essential difference between the above two tuning methods lies in their different
assumptions about the root of transferability. Residual tuning assumes that transferability
is encoded in the behaviors of each module, i.e., the features output by each module. When
adapting to the downstream tasks, we only need to add some task-specific behaviors by
stacking the pre-trained modules with the residual adapter modules. In contrast, parameter
difference tuning assumes that transferability lies in the pre-trained parameters. Most of the
pre-trained parameters can be reused, and only a small part of them need to be adapted to
the downstream tasks, thus we only need to store the increment. Another thing to mention
is that when limiting the size of the residual adapters or the complexity of the difference
vector, these methods naturally overcome the catastrophic forgetting issue in Section 3.1.1.

3.1.4 Data Efficiency

Currently, when fine-tuning large pre-trained models, hundreds or even thousands of labeled
samples are still required to achieve strong performance on a specific downstream task,
which limits the application of the “pre-training and fine-tuning” paradigm to wider range
of tasks where labeled data are expensive to collect. In contrast, people can adapt to a
new task with extremely few labeled samples, which is known as few-shot learning, or even
with no labeled samples, which is known as zero-shot learning. Considering the lifecycle of
deep learning, we can tackle this problem in three ways. The first is to improve the cross-
task transferability of the pre-trained models, such as by increasing the model capacity or
the pre-training dataset size, which is mentioned in Section 2. The second is to transfer
from another labeled source domain where labeled data is cheaper to collect, which will be
discussed in Section 3.2. The last is to reformulate the target task to close its gap with the
pre-trained models, which is the focus of this part.

Metric Learning. Fine-tuning in low data regimes will easily cause over-fitting as updat-
ing the model of large-scale parameters using few labeled samples is ill-posed. In contrast,
many non-parametric methods, such as nearest neighbors, can deal with low-sample regimes
without suffering from catastrophic forgetting. To combine the advantages of parametric
and non-parametric methods, Matching Net (Vinyals et al., 2016) uses an attention mech-
anism over the learned representations to predict the classes for the query samples, which
can be interpreted as weighted nearest neighbors. Since labeled data is severely limited,
ProtoNet (Snell et al., 2017) adds a stronger inductive bias that there exists a single pro-
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totype representation for each class, where each prototype is the mean of the features of
the labeled samples in each class, and classification boils down to finding the nearest pro-
totype. Since no gradient update is performed on the feature representation, choosing a
proper distance metric that has good transferability across tasks plays an important role.
A common choice is the cosine distance, which explicitly reduces the intra-class variations
and improves the cross-task transferability. Chen et al. (2019a) find that by replacing the
linear classifier with a cosine-distance based classifier, the naive feature transfer method
without fine-tuning serves as a strong baseline in few-shot learning.

Prompt Learning. Prompting, firstly proposed in GPT-3 (Brown et al., 2020), is another
way to reformulate the downstream task to make it similar to the solved pre-training task.
In fine-tuning, models will take input x and predict an output y as P (y|x). In prompting,
the original input x is modified by a prompt template into a new string x̃ that has unfilled
slots, then the pre-trained language model will fill x̃ to obatin a final string x̂ and derive the
output y from x̂ (Liu et al., 2021b). Table 3 provides an example of prompting methods.

Table 3: An example of prompting method from Liu et al. (2021b).

Name Notation Example

Input x I love this film.
Output y positive

Prompt Template fprompt(x) [X] Overall, it was a [Z] film.
Prompt x̃ I love this film. Overall, it was a [Z] film.
Filled Prompt x̂ I love this movie. Overall, it was a good movie.

The advantage of prompting is that it enables few-shot or even zero-shot task adaptation.
The strong cross-task transferability stems from the implicit multiple tasks such as question-
answering that language models are forced to learn on the large-scale pre-training corpus.
However, this transferability requires a large model capacity to deal with potential implicit
tasks and is also very sensitive to the choice of prompts. Thus, the disadvantage is that it
introduces the necessity for prompt engineering, i.e., finding the best prompts to solve each
downstream task, which is work-heavy and time-consuming especially on large datasets.
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Figure 17: (a) Fine-tuning generates a new set of parameters for each downstream task. (b)
Prompting fixes the pre-trained parameters and finds task-specific prompts to solve each
downstream task. (c) Instruction Tuning tunes the pre-trained models on instruction-format
dataset and uses the obtained model to do inference with multiple downstream tasks.
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Combining prompting and fine-tuning may tackle this problem (Figure 17). PET-TC
(Schick and Schütze, 2020) tunes the parameters of pre-trained language models in prompt
learning while Prefix-Tuning (Li and Liang, 2021) adds additional prompt-related parame-
ters and tunes these parameters. Instruction Tuning (Wei et al., 2022) explicitly fine-tunes
the pre-trained models on a mixture of datasets expressed through natural language instruc-
tions (similar to the filled prompt) and obtain Fine-tuned LAnguage Model (FLAN), which
largely increases the models’ transferability to unseen tasks. In summary, prompt learning
has provided a revolutionary way on how to utilize the transferability of pre-trained models.

3.1.5 Remarks

Table 4 gives a comparison of different task adaptation methods. Fine-tuning (including
vanilla fine-tuning, domain adaptive tuning, and regularization tuning) has better perfor-
mance when there are enough labeled data in the downstream tasks. In contrast, prompt
learning requires much fewer labeled data to achieve decent performance, yet its applica-
tions are still limited to NLP and it is still non-trivial to extend it to vision or other areas.
Fine-tuning is the most parameter-inefficient since it generates a full set of model parame-
ters for each downstream task, while residual tuning, difference tuning, and prompt learning
are all parameter efficient. Also, these latter methods naturally mitigate the catastrophic
forgetting problem, but negative transfer is still a hard problem to be resolved.

Table 4: Comparison between different task adaptation methods.

Adaptation
Performance1

Data
Efficiency2

Parameter
Efficiency3

Modality
Scalability4

Task
Scalability5

Feature Transfer F FF FFF FFF FFF

Vanilla Fine-tuning FFF F F FFF FFF

Domain Adaptive Tuning FFF FF F FF FFF

Regularization Tuning FFF FF F FFF F

Residual Tuning FF FF FF FF FF

Parameter Difference Tuning FF FF FF FFF FFF

Metric Learning F FFF FFF FFF F

Prompt Learning FF FFF FFF F F

1 Adaptation Performance: performance when there are large-scale labeled data in downstream tasks.
2 Data Efficiency: performance when there are only small-scale labeled data in downstream tasks.
3 Parameter Efficiency: whether can control parameters when the number of downstream tasks increases.
4 Modality Scalability: whether can adapt pre-trained models to various modalities, such as text, graph.
5 Task Scalability: whether can adapt pre-trained models to different downstream tasks, such as detection.

The motivation of many task adaptation methods can be understood from the perspec-
tive of transferability. For instance, domain adaptive tuning aims to bridge the domain
discrepancy between the pre-training task and the downstream task by further obtaining a
pre-trained model on the target data distribution. Prompt learning aims to bridge the task
discrepancy between the pre-training task and the downstream task by reformulating all
the tasks to the same format. In this scenario, when all tasks can be expressed in the same
form, the difference between the pre-training task and the downstream task is only the shift
in data distributions, i.e., task adaptation becomes the domain adaptation problem.
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3.2 Domain Adaptation

The pre-training and fine-tuning paradigm has greatly improved the state-of-the-arts for
diverse machine learning problems and applications, and the pre-trained deep networks can
be easily adapted to the tasks at hand even with a small amount of labeled data. However,
in many practical scenarios, there is no labeled training data and thus there is the demand
to transfer a deep network from a source domain where labeled training data is available to
a target domain where only unlabeled data exists (Chen et al., 2012; Glorot et al., 2011). In
this situation, the deep models still suffer from performance degradations due to distribution
shift (Quionero-Candela et al., 2009). Thus, domain adaptation is proposed to reduce the
distribution shift between training and testing domains (Pan and Yang, 2010).

Many methods have been proposed for domain adaptation in the shallow regime, either
by re-weighting or selecting samples from the source domain (Sugiyama et al., 2008) or
seeking an explicit feature space transformation from the source distribution into the target
distribution (Gong et al., 2013). As seminal methods, Huang et al. (2007); Pan et al. (2011);
Long et al. (2013) explicitly match the distributions in the kernel-reproducing Hilbert space,
while Gong et al. (2012) map the principal axes associated with each of the distributions.
This survey will focus on deep domain adaptation, where adaptation modules are embedded
in deep architectures to match data distributions across domains.

In unsupervised domain adaptation (UDA), there is a source domain Ŝ = {(xsi ,ysi )}ni=1

of n labeled samples and a target domain T̂ = {xti}mi=1 of m unlabeled samples. The goal
of a learning algorithm is to find a hypothesis h : X 7→ Y in the hypothesis space H with
a low target risk εT (h) = E(xt,yt)∼T [`(h(xt),yt)] with no access to the labels of T , where
` : Y × Y → R+ is a loss function. Several seminal theories have been proposed to tackle
this problem and the the main idea of them is to bound the target risk εT (h) by the source
risk εS(h) and a distribution distance. In this survey, we will focus on the theory of H∆H-
Divergence (Ben-David et al., 2006, 2010a; Mansour et al., 2009) and Disparity Discrepancy
(Zhang et al., 2019c) and illustrate how to derive different algorithms from these theories.
First, using triangle inequalities, we can relate the target risk to the source risk as follows.

Theorem 3 (Bound with Disparity) Assume that the loss function ` is symmetric and
obeys the triangle inequality. Define the disparity between any two hypotheses h and h′ on
distribution D as

εD(h, h′) = E(x,y)∼D[`(h(x), h′(x))]. (14)

Then the target risk εT (h) can be bounded by

εT (h) 6 εS (h) + [εS (h∗) + εT (h∗)] + |εS (h, h∗)− εT (h, h∗)| , (15)

where h∗ = arg minh∈H [εS (h) + εT (h)] is the ideal joint hypothesis, εideal = εS (h∗) + εT (h∗)
is the ideal joint error, |εS (h, h∗)− εT (h, h∗)| is the disparity difference between S and T .

It is a common assumption in domain adaptation that the ideal joint error εideal shall be
sufficiently small, otherwise domain adaptation will be infeasible, the impossibility theorem
(Ben-David et al., 2010b). The goal is reduced to bound the disparity difference. However,
since the ideal hypothesis h∗ is unknown due to the unavailability of labeled target data, the
disparity difference cannot be estimated directly. To this end, H∆H-Divergence (Ben-David
et al., 2006, 2010a) is proposed to measure the upper bound of the disparity difference.
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Definition 4 (H∆H-Divergence) Define H∆H , {h|h = h1 ⊗ h2, h1, h2 ∈ H} as the
symmetric difference hypothesis space of H, where ⊗ stands for the XOR operator. Then
the H∆H-Divergence between S and T is

dH∆H(S, T ) , sup
h,h′∈H

∣∣εS (h, h′)− εT (h, h′)∣∣ .
For binary classification problem with the 01-loss, `(y, y′) = 1(y 6= y′), we have

dH∆H(S, T ) = sup
δ∈H∆H

|ES [δ(x) 6= 0]− ET [δ (x) 6= 0]| .

The main advantage of the H∆H-Divergence is that it can be estimated from finite un-
labeled samples of source and target domains. However, it is generally hard to compute and
optimize. Thus, it is approximated by training a domain discriminator D that separates the
source and target samples (Ben-David et al., 2006; Ganin and Lempitsky, 2015). Assume
that the family of the discriminators is rich enough, such as the multilayer perceptrons
(MLP) that is universal approximator to any functions, to contain H∆H, i.e., H∆H ⊂ HD.
TheH∆H-Divergence can be further bounded by supD∈HD

|ES [D(x) = 1] + ET [D (x) = 0]|,
which gives rise to the domain adversarial methods in Section 3.2.2. The H∆H-Divergence
can also be estimated in a nonparametric way by replacing H∆H with a proper function
space F , which induces the statistics matching methods in Section 3.2.1.

The following theorem is the earliest theory in domain adaptation, which establishes the
generalization bound based on the H∆H-Divergence for binary classification problems.

Theorem 5 (Ben-David et al. (2010a)) Let H be a binary hypothesis space of VC di-
mension d. If Ŝ and T̂ are samples of size m each, then for any δ ∈ (0, 1), with probability
at least 1− δ, for every h ∈ H,

εT (h) ≤ εS(h) + dH∆H(Ŝ, T̂ ) + εideal + 4

√
2d log(2m) + log(2

δ )

m
. (16)

This bound sheds key insights into algorithm designs. However, it has the limit of being
based on the particular 01-loss. Thus, Mansour et al. (2009) extend the domain adaptation
theory to a general class of loss functions satisfying the symmetry and subadditivity.

Theorem 6 (Mansour et al. (2009)) Assume that the loss function ` is symmetric and
obeys the triangle inequality, and define h∗S = arg minh∈H εS(h) and h∗T = arg minh∈H εT (h)
as the ideal hypotheses for the source and target domains, then for every h ∈ H,

εT (h) ≤ εS(h, h∗S) + dH∆H(S, T ) + ε, (17)

where εS(h, h∗S) stands for the source risk and ε = εT (h∗T ) + εS(h∗T , h
∗
S) for the capacity to

adapt. Further, let ` be bounded, ∀(y, y′) ∈ Y2, `(y, y′) ≤M for some M > 0, and defined as
`(y, y′) = |y−y′|q for some q. If Ŝ and T̂ are samples of size n and m each, with probability
at least 1− δ, we have

dH∆H(S, T ) ≤ dH∆H(Ŝ, T̂ ) + 4q(Rn,S(H) + Rm,T (H)) + 3M

(√
log 4

δ

2n
+

√
log 4

δ

2m

)
, (18)
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where Rn,D is the expected Rademacher Complexity (Bartlett and Mendelson, 2002) with
respect to distribution D and sample size n.

Note that the H∆H-Divergence bounds are still loose since the supremum is taken over
both h′ ∈ H and h ∈ H. Observing that h is known as the source classifier, the Disparity
Discrepancy (Zhang et al., 2019c) provides a tighter bound by computing directly on H.

Definition 7 (Disparity Discrepancy) Given a binary hypothesis space H and a specific
hypothesis h∈H, the Disparity Discrepancy induced by h′ ∈ H is defined by

dh,H(S, T ) = sup
h′∈H

(
ET 1[h′ 6= h]− ES1[h′ 6= h]

)
(19)

Since the supremum is only take over h′ ∈ H, estimating and minimizing the disparity
discrepancy jointly through a minimax game can be done much more easily. The disparity
discrepancy can well measure the distribution shift and yields a tighter generalization bound.

Theorem 8 (Zhang et al. (2019c)) Let Ŝ and T̂ be samples of size n and m each. For
any δ > 0 and every binary classifier h ∈ H, with probability at least 1− 3δ, we have

εT (h) ≤ εŜ(h) + dh,H(Ŝ, T̂ ) + εideal + 2Rn,S(H)

+ 2Rn,S(H∆H) + 2

√
log 2

δ

2n
+ 2Rm,T (H∆H) +

√
log 2

δ

2m
.

(20)

The disparity discrepancy can be further extended to the multiclass classification prob-
lem with hypothesis space F of scoring functions f : X ×Y → R and margin loss, which is
going beyond existing bounds and closer to the choices for real tasks (Zhang et al., 2019c).

Definition 9 (Margin Disparity Discrepancy) Given a scoring hypothesis space F ,
denote the margin of a real hypothesis f at a labeled example (x, y) as ρf (x, y) , 1

2(f(x, y)−
maxy′ 6=y f(x, y′)), the labeling function induced by f as hf : x 7→ arg maxy∈Y f(x, y), and
the margin loss as

Φρ(x) ,


0 ρ ≤ x
1− x/ρ 0 ≤ x ≤ ρ
1 x ≤ 0

, (21)

then the margin disparity between f and f ′ on distribution D is

ε
(ρ)
D (f ′, f) = E(x,y)∼D[Φρ(ρf ′(x, hf (x))]. (22)

Given a specific hypothesis f ∈F , the Margin Disparity Discrepancy is defined by

d
(ρ)
f,F (S, T ) = sup

f ′∈F
[ε

(ρ)
T (f ′, f)− ε(ρ)

S (f ′, f)]. (23)

Note that the margin disparity satisfies the nonnegativity and subadditivity, but not the
symmetry. Thus Theorem 6 cannot apply here and a new generalization bound is derived.
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Theorem 10 (Zhang et al. (2019c)) Given the same settings with Definition 9, for any
δ > 0, with probability at least 1 − 3δ, the following margin bound holds for all scoring
functions f ∈ F ,

εT (f) ≤ ε
(ρ)

Ŝ
(f) + d

(ρ)
f,F (Ŝ, T̂ ) + εideal +

2k2

ρ
Rn,S(Π1F)

+
k

ρ
Rn,S(ΠHF) + 2

√
log 2

δ

2n
+
k

ρ
Rm,T (ΠHF) +

√
log 2

δ

2m
,

(24)

where ΠHF , {x 7→ f(x, h(x))|h ∈ H, f ∈ F} is the scoring version of the symmetric hy-

pothesis space H∆H, Π1F , {x 7→ f(x, y)|y ∈ Y, f ∈ F} and εideal = minf∗∈F{err
(ρ)
S (f∗) +

err
(ρ)
T (f∗)} is the ideal joint error in terms of margin loss, k is the number of classes.

This margin bound suggests that a proper margin ρ could yield better generalization on
the target domain. Theorems 8 and 10 together form the theoretical basis of the hypothesis
adversarial methods in Section 3.2.3. Note that the supremum in both theH∆H-Divergence
and Disparity Discrepancy will become meaningless, when the allowed hypothesis space H
is too large, which is common in deep neural networks. Thus, pre-training the deep neural
networks on large-scale upstream data to decrease the allowed hypotheses is still necessary
for the domain adversarial methods and hypothesis adversarial methods.

A final important note is that while there are no theoretical guarantees for some well-
established methods, they have also achieved quite strong performance in practice, such as
the domain translation methods in Section 3.2.4 and the semi-supervised learning methods
in Section 3.2.5. Figure 18 highlights the cornerstones of domain adaptation methods in
deep learning, which rely on the reuse of transferability gained in pre-trained deep models.
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Figure 18: The cornerstones of domain adaptation methods in deep learning.
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3.2.1 Statistics Matching

We have introduced several seminal theories on the generalization bounds for domain adap-
tation, which are all based on the hypothesis-induced distribution distances. These distances
are less intuitive because they rely on unknown hypotheses and cannot be computed before
learning the hypotheses. In this section, we first introduce another family of metrics on the
space of probability measures well-studied in probability theory, which provide interpretable
and complementary properties to the hypothesis-induced distribution distances and relate
closely to a large set of domain adaptation algorithms (Long et al., 2015, 2017).

Definition 11 (Maximum Mean Discrepancy) Given two probability distributions S
and T on a measurable space X, the integral probability metric (Redko et al., 2020) is
defined as dF (S, T ) , supf∈F

∣∣Ex∼S [f(x)] − Ex∼T [f(x)]
∣∣, where F is a class of bounded

functions on X. Sriperumbudur et al. (2010) further restrict F as the unit ball in Reproduc-
ing Kernel Hilbert Space (RKHS) Hk endowed with a characteristic kernel k, F = {f ∈ Hk :
||f ||Hk

≤ 1}, leading to the maximum mean discrepancy (MMD) (Gretton et al., 2012a),

d2
MMD(S, T ) =

∥∥Ex∼S [φ(x)]− Ex∼T [φ(x)]
∥∥2

Hk
, (25)

where φ(x) is a feature map associated with kernel k such that k(x,x′) = 〈φ(x), φ(x′)〉. It can
be proved from probability theory that S = T if and only if dF (S, T ) = 0 or d2

MMD(S, T ) = 0.

Theorem 12 (Redko et al. (2020)) Given the same settings with Definition 11, let ` be
a convex loss function with a parametric form `(y, y′) = |y − y′|q for some q. Then for any
δ > 0, with probability at least 1− δ, the following bound holds for all h ∈ F ,

εT (h) ≤ εS(h) + dMMD(Ŝ, T̂ ) + εideal

+
2

n
Ex∼S [

√
tr(KS)] +

2

m
Ex∼T [

√
tr(KT )] +

√
log 2

δ

2n
+

√
log 2

δ

2m
,

(26)

where KS and KT are the kernel matrices computed on samples from S and T , respectively.

This bound has several advantages compared to previous theories. First, it is hypothesis-
free and does not require estimating hypotheses to measure the distribution distance. Sec-
ond, the complexity term does not depend on the Vapnik-Chervonenkis dimension. Third,
the unbiased estimate of MMD can be computed in linear time. Fourth, minimizing MMD
has a nice interpretation of statistics matching in the probability space. These advantages
make the bound particularly useful to underpin several seminal algorithms.

Deep Domain Confusion (DDC) (Tzeng et al., 2014) applies MMD with a linear kernel
to a single feature layer of the deep network, yet it has limited power for closing the domain
gap since linear kernel is not characteristic and cannot ensure MMD to be a probability
metric. Thereby, Deep Adaptation Network (DAN) (Long et al., 2015, 2019) introduces
the multiple-kernel variant of MMD (MK-MMD) (Gretton et al., 2012b,a) to measure the
domain relatedness, employing a convex combination of multiple characteristic kernels such
as Gaussian kernel to make the function space F rich enough and enhance the distinguishing
power of MK-MMD. Besides, as shown in Figure 19, multiple domain-specific layers are
adapted by MK-MMD, which enables learning transferable features for domain adaptation.
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Figure 19: The cornerstone methods of statistics matching: (a) DAN adapts the marginal
distributions of activations in multiple task-specific layers with MK-MMD. (b) JAN adapts
the joint distributions of the feature activations and classification predictions with JMMD.

DAN mainly reduces the shift in the feature distribution and ignores that in the label
distribution. Take AlexNet as example, the feature distribution shift mainly exists in layers
fc6 and fc7 while the label distribution shift mainly exists in layer fc8. Joint Adaptation
Network (JAN) (Long et al., 2017) proposes Joint Maximum Mean Discrepancy (JMMD) to
measure the shift in joint distributions P (Xs,Ys) and Q(Xt,Yt). Denoting the activations

of adapted layers L as {(zs1i , . . . , z
s|L|
i )}ni=1 and {(zt1j , . . . , z

t|L|
j )}mj=1, JMMD is defined as

d2
JMMD(Ŝ, T̂ ) =

∥∥∥Ei∈[n] ⊗l∈L φl(zsli )− Ej∈[m] ⊗l∈L φl(ztlj )
∥∥∥2

Hk

(27)

where φl is the feature map associated with kernel kl for layer l and ⊗ is the outer product.

A characteristic kernel widely used in MMD is the Gaussian kernel, or k(x1,x2) =
exp(−||x1 − x1||2/2σ2). After Taylor expansion, MMD can be considered as a weighted
sum of distances between all orders of statistic moments. Thus, the statistic moments can
be directly used to measure the distribution distance. For instance, deep CORAL (Sun and
Saenko, 2016) uses the second-order statistics (covariance) to measure distribution distance,
which is frustratingly easy yet useful. Center moment discrepancy (CMD) (Zellinger et al.,
2017) further considers an explicit order-wise matching of higher-order moments.

One disadvantage of MMD is that it cannot take into account the geometry of the data
distribution when estimating the discrepancy between two domains. Thus, Joint Distribu-
tion Optimal Transport (JDOT) (Courty et al., 2017) is introduced into domain adaptation,
and Deep JDOT (Damodaran et al., 2018) further extends it to deep networks. Another dis-
advantage is that minimizing MMD on the instance representation has the risk of changing
the feature scale, while regression tasks are fragile to feature scaling. Thus, Representation
Subspace Distance (RSD) (Chen et al., 2021b) closes the domain shift through orthogonal
bases of the representation spaces, which are free from feature scaling.

Instead of explicitly matching the statistics moments of feature distributions, Adaptive
Batch Normalization (AdaBN) (Li et al., 2017) implicitly minimizes domain discrepancy by
aligning BatchNorm Ioffe and Szegedy (2015) statistics. The hypothesis is that task-related
knowledge is stored in the weight matrix while domain-related knowledge is represented by
BatchNorm statistics. Thus AdaBN replaces the mean and variance of all BatchNorm layers
with those estimated on the target domain at inference to reduce the domain shift. However,
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Figure 20: Both DANN and CDAN have a feature generator network ψ, a classifier h, and
a domain discriminator D connected to ψ via a gradient reversal layer. (a) In DANN, the
discriminator D is trained to distinguish between domains while the generator ψ tries to
make the feature distributions indistinguishable for the discriminator. (b) In CDAN, the
discriminator D is conditioned on the classifier prediction ŷ via a multilinear map z⊗ ŷ.

it is risky that AdaBN excludes the statistics on the target domain from training. Thus,
Transferable Normalization (TransNorm) (Wang et al., 2019c) applies domain-specific mean
and variance at both training and inference to capture sufficient statistics of both domains.

Finally, both MMD and JMMD may misalign samples from different classes due to a
suboptimal modeling of the discriminative structure. To alleviate this problem, Contrastive
Adaptation Network (CAN) (Kang et al., 2019) alternatively estimates the labels of target
samples through clustering, and adapts the feature representations in a class-wise manner.
Besides, CAN uses class-aware sampling for both domains to improve adaptation efficiency.

3.2.2 Domain Adversarial Learning

Domain Adversarial Neural Network. An important milestone for modeling distribu-
tions is the Generative Adversarial Net (GAN) (Goodfellow et al., 2014). Inspired by GAN,
Domain Adversarial Neural Network (DANN) (Ganin and Lempitsky, 2015; Ganin et al.,
2016) integrates a two-player game into domain adaptation (Figure 20). The first player is
the domain discriminator D trained to distinguish the source features from the target fea-
tures and the second player is the feature generator ψ trained simultaneously to confuse the
domain discriminator. As mentioned in Section 3.2, the upper bound of H∆H-Divergence
between feature distributions can be estimated by training the domain discriminator D,

LDANN(ψ) = max
D

E
xs∼Ŝ log[D(zs)] + E

xt∼T̂ log[1−D(zt)], (28)

where z = ψ(x) is the feature representation for x. The objective of the feature generator
ψ is to minimize the source error as well as the H∆H-Divergence bounded by Equation 28,

min
ψ,h

E
(xs,ys)∼ŜLCE(h(zs),ys) + λLDANN(ψ), (29)

where LCE is the cross-entropy loss, λ is a hyper-parameter that trades off source error and
domain adversary. Minimizing the cross-entropy loss will lead to discriminative representa-
tions while decreasing the domain adversarial loss will result in transferable representations.

36



Transferability in Deep Learning: A Survey

DANN aligns the marginal feature distributions through adversarial training. However,
this may be insufficient when the feature-label joint distributions change between domains.
Besides, the feature distribution is usually multimodal in multi-class classification, thus even
if the discriminator is fully confused, there is no guarantee that the two feature distributions
are similar (Arora et al., 2017). To tackle these two issues, Conditional Domain Adversarial
Network (CDAN) (Long et al., 2018) conditions features z on classifier predictions ŷ = h(z)
and introduces multilinear map z⊗ ŷ instead of z as the input to domain discriminator D:

LCDAN(ψ) = max
D

E
xs∼Ŝ log[D(zs ⊗ ŷs)] + E

xt∼T̂ log[1−D(zt ⊗ ŷt)]. (30)

Conditioning on ŷ, CDAN fully captures cross-variance between the feature representation
and classifier prediction, resulting in better alignment of the joint distributions.

Tzeng et al. (2015) align the class distributions explicitly by transferring the similarity
structure in classes from the source domain to the target domain. Specifically, the average
output probability of data from each class is computed over the source samples as soft labels.
Then the model is optimized to match the distribution over classes to the soft labels.

Improvements. DANN integrates a gradient reverse layer (GRL) into the standard ar-
chitecture to implement the minimax between the feature generator and domain classifier.
However, this optimizing strategy might not work well in practice due to gradient vanishing,
which is also a major problem in training GANs. For instance, when the generated target
features zt are very distinguishable from source features such that D(zt) = 0, the gradient
for the feature generator is small and vice versa. This makes the optimization of the feature
generator difficult. Thus, Adversarial Discriminative Domain Adaptation (ADDA) (Tzeng
et al., 2017) splits the optimization of feature generator ψ and domain classifier D into two
independent objectives, where the maximization of D remains unchanged, but the objective
of ψ becomes

min
ψ

E
xt∼T̂ − log[D(zt)]. (31)

This assigns small gradients for source-like target samples and larger gradients for the other
target samples. It has the same fixed-point properties as GRL while making the optimiza-
tion easier for the feature generator. Although adversarial domain adaptation enhances the
feature transferability, i.e. the ability of feature representations to bridge the discrepancy
across domains, studies (Chen et al., 2019c) reveal that it is at the expense of deteriorating
the discriminability, i.e. the easiness of separating categories over the fixed feature represen-
tations of both domains. Spectral analysis shows that only the eigenvectors corresponding
to the largest singular values tend to carry transferable knowledge, while other eigenvectors
may reflect domain variations and thus be overly penalized in domain adversarial training.
However, these eigenvectors may convey crucial discriminative information, and thus the
discriminability is weakened. To tackle this transferability-discriminability dilemma, Batch
Spectral Penalization (BSP) (Chen et al., 2019c) penalizes the largest singular values so that
the other eigenvectors can be relatively strengthened to boost the feature discriminability.
Domain Separation Network (DSN) (Bousmalis et al., 2016) introduces a private subspace
for each domain, which preserves domain-specific information, such as background and low-
level image statistics. Then domain alignment is performed safely in the shared subspace,
which is orthogonal to the private subspace responsible for the discriminative tasks.
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Figure 2. Algorithmic overview. Given images with the size H by W in source and target domains, we pass them through the segmentation
network to obtain output predictions. For source predictions with C categories, a segmentation loss is computed based on the source ground
truth. To make target predictions closer to the source ones, we utilize a discriminator to distinguish whether the input is from the source or
target domain. Then an adversarial loss is calculated on the target prediction and is back-propagated to the segmentation network. We call
this process as one adaptation module, and we illustrate our proposed multi-level adversarial learning by adopting two adaptation modules
at two different levels here.

ages to target domain, thereby obtaining a simulated train-
ing set for target images.

We note that domain adaptation for pixel-level prediction
tasks have not been explored widely. Hoffman et al. [13]
introduce the task of domain adaptation on semantic seg-
mentation by applying adversarial learning (i.e., DANN)
in a fully-convolutional way on feature representations and
additional category constraints similar to the constrained
CNN [30]. Other methods focus on adapting synthetic-to-
real or cross-city images by adopting class-wise adversarial
learning [3] or label transfer [3]. Similar to the PixelDA
method [1], one concurrent work, CyCADA [12] uses the
CycleGAN [44] and transfers source domain images to the
target domain with pixel alignment, thus generating extra
training data combined with feature space adversarial learn-
ing [13].

Although feature space adaptation has been successfully
applied to image classification, pixel-level tasks such as
semantic segmentation remains challenging based on fea-
ture adaptation-based approaches. In this paper, we use the
property that pixel-level predictions are structured outputs
that contain information spatially and locally, to propose an
efficient domain adaptation algorithm through adversarial
learning in the output space.

3. Algorithmic Overview

3.1. Overview of the Proposed Model

Our domain adaptation algorithm consists of two mod-
ules: a segmentation network G and the discriminator Di,

where i indicates the level of a discriminator in the multi-
level adversarial learning. Two sets of images 2 RH⇥W⇥3

from source and target domains are denoted as {IS} and
{IT }. We first forward the source image Is (with annota-
tions) to the segmentation network for optimizing G. Then
we predict the segmentation softmax output Pt for the tar-
get image It (without annotations). Since our goal is to
make segmentation predictions P of source and target im-
ages (i.e., Ps and Pt) close to each other, we use these two
predictions as the input to the discriminator Di to distin-
guish whether the input is from the source or target domain.
With an adversarial loss on the target prediction, the net-
work propagates gradients from Di to G, which would en-
courage G to generate similar segmentation distributions in
the target domain to the source prediction. Figure 2 shows
the overview of the proposed algorithm.

3.2. Objective Function for Domain Adaptation

With the proposed network, we formulate the adaptation
task containing two loss functions from both modules:

L(Is, It) = Lseg(Is) + �advLadv(It), (1)

where Lseg is the cross-entropy loss using ground truth an-
notations in the source domain, and Ladv is the adversarial
loss that adapts predicted segmentations of target images to
the distribution of source predictions (see Section 4). In (1),
�adv is the weight used to balance the two losses.

Figure 2. Algorithmic overview. Given images with the size H by W in source and target domains, we pass them through the segmentation
network to obtain output predictions. For source predictions with C categories, a segmentation loss is computed based on the source ground
truth. To make target predictions closer to the source ones, we utilize a discriminator to distinguish whether the input is from the source or
target domain. Then an adversarial loss is calculated on the target prediction and is back-propagated to the segmentation network. We call
this process as one adaptation module, and we illustrate our proposed multi-level adversarial learning by adopting two adaptation modules
at two different levels here.

ages to target domain, thereby obtaining a simulated train-
ing set for target images.

We note that domain adaptation for pixel-level prediction
tasks have not been explored widely. Hoffman et al. [13]
introduce the task of domain adaptation on semantic seg-
mentation by applying adversarial learning (i.e., DANN)
in a fully-convolutional way on feature representations and
additional category constraints similar to the constrained
CNN [30]. Other methods focus on adapting synthetic-to-
real or cross-city images by adopting class-wise adversarial
learning [3] or label transfer [3]. Similar to the PixelDA
method [1], one concurrent work, CyCADA [12] uses the
CycleGAN [44] and transfers source domain images to the
target domain with pixel alignment, thus generating extra
training data combined with feature space adversarial learn-
ing [13].

Although feature space adaptation has been successfully
applied to image classification, pixel-level tasks such as
semantic segmentation remains challenging based on fea-
ture adaptation-based approaches. In this paper, we use the
property that pixel-level predictions are structured outputs
that contain information spatially and locally, to propose an
efficient domain adaptation algorithm through adversarial
learning in the output space.

3. Algorithmic Overview

3.1. Overview of the Proposed Model

Our domain adaptation algorithm consists of two mod-
ules: a segmentation network G and the discriminator Di,

where i indicates the level of a discriminator in the multi-
level adversarial learning. Two sets of images 2 RH⇥W⇥3

from source and target domains are denoted as {IS} and
{IT }. We first forward the source image Is (with annota-
tions) to the segmentation network for optimizing G. Then
we predict the segmentation softmax output Pt for the tar-
get image It (without annotations). Since our goal is to
make segmentation predictions P of source and target im-
ages (i.e., Ps and Pt) close to each other, we use these two
predictions as the input to the discriminator Di to distin-
guish whether the input is from the source or target domain.
With an adversarial loss on the target prediction, the net-
work propagates gradients from Di to G, which would en-
courage G to generate similar segmentation distributions in
the target domain to the source prediction. Figure 2 shows
the overview of the proposed algorithm.

3.2. Objective Function for Domain Adaptation

With the proposed network, we formulate the adaptation
task containing two loss functions from both modules:

L(Is, It) = Lseg(Is) + �advLadv(It), (1)

where Lseg is the cross-entropy loss using ground truth an-
notations in the source domain, and Ladv is the adversarial
loss that adapts predicted segmentations of target images to
the distribution of source predictions (see Section 4). In (1),
�adv is the weight used to balance the two losses.

Table 6. Results of adapting Cityscapes to the Cross-City dataset. We construct our baseline model using the ResNet-101 architecture,
and compare results between feature adaptation and our multi-level adaptation method in the output space.
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Figure 3. Example results of adapted segmentation for GTA5-to-Cityscapes. For each target image, we show results before adaptation,
with feature adaptation and our adapted segmentations in the output space.

Table 6. Results of adapting Cityscapes to the Cross-City dataset. We construct our baseline model using the ResNet-101 architecture,
and compare results between feature adaptation and our multi-level adaptation method in the output space.
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Figure 3. Example results of adapted segmentation for GTA5-to-Cityscapes. For each target image, we show results before adaptation,
with feature adaptation and our adapted segmentations in the output space.
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Figure 2. Algorithmic overview. Given images with the size H by W in source and target domains, we pass them through the segmentation
network to obtain output predictions. For source predictions with C categories, a segmentation loss is computed based on the source ground
truth. To make target predictions closer to the source ones, we utilize a discriminator to distinguish whether the input is from the source or
target domain. Then an adversarial loss is calculated on the target prediction and is back-propagated to the segmentation network. We call
this process as one adaptation module, and we illustrate our proposed multi-level adversarial learning by adopting two adaptation modules
at two different levels here.

ages to target domain, thereby obtaining a simulated train-
ing set for target images.

We note that domain adaptation for pixel-level prediction
tasks have not been explored widely. Hoffman et al. [13]
introduce the task of domain adaptation on semantic seg-
mentation by applying adversarial learning (i.e., DANN)
in a fully-convolutional way on feature representations and
additional category constraints similar to the constrained
CNN [30]. Other methods focus on adapting synthetic-to-
real or cross-city images by adopting class-wise adversarial
learning [3] or label transfer [3]. Similar to the PixelDA
method [1], one concurrent work, CyCADA [12] uses the
CycleGAN [44] and transfers source domain images to the
target domain with pixel alignment, thus generating extra
training data combined with feature space adversarial learn-
ing [13].

Although feature space adaptation has been successfully
applied to image classification, pixel-level tasks such as
semantic segmentation remains challenging based on fea-
ture adaptation-based approaches. In this paper, we use the
property that pixel-level predictions are structured outputs
that contain information spatially and locally, to propose an
efficient domain adaptation algorithm through adversarial
learning in the output space.

3. Algorithmic Overview

3.1. Overview of the Proposed Model

Our domain adaptation algorithm consists of two mod-
ules: a segmentation network G and the discriminator Di,

where i indicates the level of a discriminator in the multi-
level adversarial learning. Two sets of images 2 RH⇥W⇥3

from source and target domains are denoted as {IS} and
{IT }. We first forward the source image Is (with annota-
tions) to the segmentation network for optimizing G. Then
we predict the segmentation softmax output Pt for the tar-
get image It (without annotations). Since our goal is to
make segmentation predictions P of source and target im-
ages (i.e., Ps and Pt) close to each other, we use these two
predictions as the input to the discriminator Di to distin-
guish whether the input is from the source or target domain.
With an adversarial loss on the target prediction, the net-
work propagates gradients from Di to G, which would en-
courage G to generate similar segmentation distributions in
the target domain to the source prediction. Figure 2 shows
the overview of the proposed algorithm.

3.2. Objective Function for Domain Adaptation

With the proposed network, we formulate the adaptation
task containing two loss functions from both modules:

L(Is, It) = Lseg(Is) + �advLadv(It), (1)

where Lseg is the cross-entropy loss using ground truth an-
notations in the source domain, and Ladv is the adversarial
loss that adapts predicted segmentations of target images to
the distribution of source predictions (see Section 4). In (1),
�adv is the weight used to balance the two losses.

Table 6. Results of adapting Cityscapes to the Cross-City dataset. We construct our baseline model using the ResNet-101 architecture,
and compare results between feature adaptation and our multi-level adaptation method in the output space.
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Figure 3. Example results of adapted segmentation for GTA5-to-Cityscapes. For each target image, we show results before adaptation,
with feature adaptation and our adapted segmentations in the output space. segmentation output
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Figure 2. Algorithmic overview. Given images with the size H by W in source and target domains, we pass them through the segmentation
network to obtain output predictions. For source predictions with C categories, a segmentation loss is computed based on the source ground
truth. To make target predictions closer to the source ones, we utilize a discriminator to distinguish whether the input is from the source or
target domain. Then an adversarial loss is calculated on the target prediction and is back-propagated to the segmentation network. We call
this process as one adaptation module, and we illustrate our proposed multi-level adversarial learning by adopting two adaptation modules
at two different levels here.

ages to target domain, thereby obtaining a simulated train-
ing set for target images.

We note that domain adaptation for pixel-level prediction
tasks have not been explored widely. Hoffman et al. [13]
introduce the task of domain adaptation on semantic seg-
mentation by applying adversarial learning (i.e., DANN)
in a fully-convolutional way on feature representations and
additional category constraints similar to the constrained
CNN [30]. Other methods focus on adapting synthetic-to-
real or cross-city images by adopting class-wise adversarial
learning [3] or label transfer [3]. Similar to the PixelDA
method [1], one concurrent work, CyCADA [12] uses the
CycleGAN [44] and transfers source domain images to the
target domain with pixel alignment, thus generating extra
training data combined with feature space adversarial learn-
ing [13].

Although feature space adaptation has been successfully
applied to image classification, pixel-level tasks such as
semantic segmentation remains challenging based on fea-
ture adaptation-based approaches. In this paper, we use the
property that pixel-level predictions are structured outputs
that contain information spatially and locally, to propose an
efficient domain adaptation algorithm through adversarial
learning in the output space.

3. Algorithmic Overview

3.1. Overview of the Proposed Model

Our domain adaptation algorithm consists of two mod-
ules: a segmentation network G and the discriminator Di,

where i indicates the level of a discriminator in the multi-
level adversarial learning. Two sets of images 2 RH⇥W⇥3

from source and target domains are denoted as {IS} and
{IT }. We first forward the source image Is (with annota-
tions) to the segmentation network for optimizing G. Then
we predict the segmentation softmax output Pt for the tar-
get image It (without annotations). Since our goal is to
make segmentation predictions P of source and target im-
ages (i.e., Ps and Pt) close to each other, we use these two
predictions as the input to the discriminator Di to distin-
guish whether the input is from the source or target domain.
With an adversarial loss on the target prediction, the net-
work propagates gradients from Di to G, which would en-
courage G to generate similar segmentation distributions in
the target domain to the source prediction. Figure 2 shows
the overview of the proposed algorithm.

3.2. Objective Function for Domain Adaptation

With the proposed network, we formulate the adaptation
task containing two loss functions from both modules:

L(Is, It) = Lseg(Is) + �advLadv(It), (1)

where Lseg is the cross-entropy loss using ground truth an-
notations in the source domain, and Ladv is the adversarial
loss that adapts predicted segmentations of target images to
the distribution of source predictions (see Section 4). In (1),
�adv is the weight used to balance the two losses.

Table 6. Results of adapting Cityscapes to the Cross-City dataset. We construct our baseline model using the ResNet-101 architecture,
and compare results between feature adaptation and our multi-level adaptation method in the output space.
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Figure 3. Example results of adapted segmentation for GTA5-to-Cityscapes. For each target image, we show results before adaptation,
with feature adaptation and our adapted segmentations in the output space.
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Figure 2. Algorithmic overview. Given images with the size H by W in source and target domains, we pass them through the segmentation
network to obtain output predictions. For source predictions with C categories, a segmentation loss is computed based on the source ground
truth. To make target predictions closer to the source ones, we utilize a discriminator to distinguish whether the input is from the source or
target domain. Then an adversarial loss is calculated on the target prediction and is back-propagated to the segmentation network. We call
this process as one adaptation module, and we illustrate our proposed multi-level adversarial learning by adopting two adaptation modules
at two different levels here.

ages to target domain, thereby obtaining a simulated train-
ing set for target images.

We note that domain adaptation for pixel-level prediction
tasks have not been explored widely. Hoffman et al. [13]
introduce the task of domain adaptation on semantic seg-
mentation by applying adversarial learning (i.e., DANN)
in a fully-convolutional way on feature representations and
additional category constraints similar to the constrained
CNN [30]. Other methods focus on adapting synthetic-to-
real or cross-city images by adopting class-wise adversarial
learning [3] or label transfer [3]. Similar to the PixelDA
method [1], one concurrent work, CyCADA [12] uses the
CycleGAN [44] and transfers source domain images to the
target domain with pixel alignment, thus generating extra
training data combined with feature space adversarial learn-
ing [13].

Although feature space adaptation has been successfully
applied to image classification, pixel-level tasks such as
semantic segmentation remains challenging based on fea-
ture adaptation-based approaches. In this paper, we use the
property that pixel-level predictions are structured outputs
that contain information spatially and locally, to propose an
efficient domain adaptation algorithm through adversarial
learning in the output space.

3. Algorithmic Overview

3.1. Overview of the Proposed Model

Our domain adaptation algorithm consists of two mod-
ules: a segmentation network G and the discriminator Di,

where i indicates the level of a discriminator in the multi-
level adversarial learning. Two sets of images 2 RH⇥W⇥3

from source and target domains are denoted as {IS} and
{IT }. We first forward the source image Is (with annota-
tions) to the segmentation network for optimizing G. Then
we predict the segmentation softmax output Pt for the tar-
get image It (without annotations). Since our goal is to
make segmentation predictions P of source and target im-
ages (i.e., Ps and Pt) close to each other, we use these two
predictions as the input to the discriminator Di to distin-
guish whether the input is from the source or target domain.
With an adversarial loss on the target prediction, the net-
work propagates gradients from Di to G, which would en-
courage G to generate similar segmentation distributions in
the target domain to the source prediction. Figure 2 shows
the overview of the proposed algorithm.

3.2. Objective Function for Domain Adaptation

With the proposed network, we formulate the adaptation
task containing two loss functions from both modules:

L(Is, It) = Lseg(Is) + �advLadv(It), (1)

where Lseg is the cross-entropy loss using ground truth an-
notations in the source domain, and Ladv is the adversarial
loss that adapts predicted segmentations of target images to
the distribution of source predictions (see Section 4). In (1),
�adv is the weight used to balance the two losses.

Table 6. Results of adapting Cityscapes to the Cross-City dataset. We construct our baseline model using the ResNet-101 architecture,
and compare results between feature adaptation and our multi-level adaptation method in the output space.
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Our Baseline 76.6 47.3 82.5 12.6 22.5 77.9 86.5 43.0 19.8 74.5 36.8 29.4 16.7 48.2
Ours (feature) 73.7 44.2 83.0 6.1 18.1 79.6 86.9 51.0 22.1 73.7 31.4 48.3 28.4 49.7
Ours (output space) 76.2 44.7 84.6 9.3 25.5 81.8 87.3 55.3 32.7 74.3 28.9 43.0 27.6 51.6

Tokyo

Cross-City [3] 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8
Our Baseline 82.9 31.3 78.7 14.2 24.5 81.6 89.2 48.6 33.3 70.5 7.7 11.5 45.9 47.7
Ours (feature) 81.5 30.8 76.6 15.3 20.2 82.0 84.0 49.4 33.3 70.5 4.5 24.3 51.6 48.0
Ours (output space) 81.5 26.0 77.8 17.8 26.8 82.7 90.9 55.8 38.0 72.1 4.2 24.5 50.8 49.9

Taipei

Cross-City [3] 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6
Our Baseline 83.5 33.4 86.6 12.7 16.4 77.0 92.1 17.6 13.7 70.7 37.7 44.4 18.5 46.5
Ours (feature) 82.1 31.9 84.1 25.7 13.2 77.2 81.2 28.1 12.0 67.0 35.8 43.5 20.9 46.6
Ours (output space) 81.7 29.5 85.2 26.4 15.6 76.7 91.7 31.0 12.5 71.5 41.1 47.3 27.7 49.1

Target Image Ground Truth Before Adaptation Feature Adaptation Ours

Figure 3. Example results of adapted segmentation for GTA5-to-Cityscapes. For each target image, we show results before adaptation,
with feature adaptation and our adapted segmentations in the output space.
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Figure 21: Where to adapt in different methods. (a) DANN performs alignment on global
features. (b) DA-Faster performs alignment on both image-level and instance-level features.
(c) SWDA performs alignment on local features. (d) Adapt-SegMap performs alignment on
local outputs.

Domain Adversarial Leanring in Real-World Scenarios. Domain adversarial learn-
ing has largely improved the performance on unlabeled target domain and has been widely
adopted in many applications (Hoffman et al., 2016; Chen et al., 2018). However, real-world
scenarios are much more complex. Here we list several situations that are often encountered
yet not well resolved, and review some existing solutions to them.

Which part to adapt is unknown. In image recognition, we only need to classify the input.
Yet in applications such as object detection, we need to locate the Region of Interests (RoIs)
first and then classify them. Due to the distribution shift across domains, the localization
of RoIs on the target domain is not reliable, thus which part to adapt in the adversarial
training is unknown. To alleviate this problem, as shown in Figure 21, DA-Faster (Chen
et al., 2018) performs domain alignment at both image level and instance level, where the
image-level alignment is believed to improve the localization of RoIs on the target domain.
SWDA (Saito et al., 2019) argues that alignment of the local features is more effective than
that of the global features for better localization. Although the above adversarial training
methods have improved the transferability of object detectors, the discriminability might
get lost in the adversarial adaptation process as mentioned by BSP (Chen et al., 2019c).
Since discriminability is crucial for the localization of RoIs, D-adapt (Jiang et al., 2022)
introduces parameter-independent category adaptor and bounding box adaptor to decouple
adversarial adaptation from detector training, which yields sharp improvement.

There are structural dependencies between labels of each sample. In low-level classifica-
tion tasks, such as semantic segmentation or token classification (Named Entity Recognition,
Parts-of-speech tagging, etc.), adaptation on features (Hoffman et al., 2016) may not be a
good option, because the feature of each pixel or each token is high-dimensional and there
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exist many pixels or tokens in a single sample. Every coin has two sides. Compared to
the high-level classification tasks, the output space of these low-level tasks contains much
richer information of the distribution, e.g., scene layout and context, and thus adaptation
on the output space can reduce the domain shift. As shown in Figure 21, Adapt-SegMap
(Tsai et al., 2018) trains a discriminator to distinguish whether the segmentation output is
from the source or the target, while the feature generator is encouraged to generate similar
segmentation outputs across domains. It explicitly aligns the output distributions of target
and source domains, and implicitly adapts the feature distributions. Further, ADVENT
(Vu et al., 2019) minimizes the distribution distance on the self-information distributions,
where the entropy of segmentation outputs is fed to the discriminator. In this way, the con-
ditional information is neglected while more attention is paid to the structural dependencies
between local semantics.

3.2.3 Hypothesis Adversarial Learning

Inevitably, there is still a gap between the proxy distance used in previous methods and
the hypothesis-induced discrepancies in the theories. To close this gap, Maximum Classifier
Discrepancy (MCD) (Saito et al., 2018) starts to estimate and optimize H∆H-Divergence in
a fully parameterized way. As shown in Figure 22, MCD maximizes the discrepancy between
two classifiers’ outputs to detect target samples far from the support of source distribution,
i.e. estimate H∆H-Divergence. A feature generator then learns to generate target features
near the support to minimize the discrepancy, i.e. minimize the domain discrepancy. MCD
uses the L1 distance to calculate the discrepancy, while Sliced Wasserstein Discrepancy
(SWD) (Lee et al., 2019) adopts the Wasserstein metric, which is the natural geometry for
probability measures induced by the optimal transport theory. In theory MCD is closer to
H∆H-Divergence, yet in experiments it is slow in convergence and very sensitive to hyper-
parameters. The reason is that there exist two classifiers h and h′ in MCD that maximize
the discrepancy, which makes the minimax optimization hard to reach equilibrium.

Disparity Discrepancy (DD) (Zhang et al., 2019c) provides a tighter bound by taking
supremum in hypothesis spaceH rather thanH∆H. This will significantly ease the minimax
optimization. As shown in Figure 22, DD introduces an adversarial classifier h′ sharing the
same hypothesis space with h. The supremum in dh,H(S, T ) is approximated by

LDD(h, ψ) = max
h′

E
xs∼ŜL

s
[
h′(ψ(xs)), h(ψ(xs))

]
− E

xt∼T̂ L
t
[
h′(ψ(xt)), h(ψ(xt))

]
,

(32)

where Ls and Lt are specific loss functions defined on the source domain and target domain
respectively. Based on the theory (Zhang et al., 2019c), when the adversarial classifier h′ is
close to the supremum, minimizing the following terms will decrease the target error εT ,

min
ψ,h

E
(xs,ys)∼ŜLCE(h(ψ(xs)),ys) + λLDD(h, ψ), (33)

where λ is a tradeoff hyper-parameter. An intuitive explanation is that DD is looking for an
adversarial classifier h′ that predicts correctly on the source domain while making different
predictions from h on the target domain. And then the feature generator ψ is encouraged
to generate features near the decision boundary to avoid such situations.
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Figure 22: (a) The training of MCD has three steps. Step A: Both the classifiers and the
feature generator are trained to classify the source samples correctly. Step B: The classifiers
h1 and h2 learn to maximize the discrepancy on the target samples. (b) Step C: The feature
generator ψ learns to minimize the discrepancy on the target samples. (c) DD and MDD
introduce an adversarial classifier h′ to maximize the discrepancy and trains the feature
generator ψ to minimize the source error as well as the discrepancy.

However, DD is still limited to the 01 loss in the classification setting. Based on scoring
functions and margin loss, Margin Disparity Discrepancy (MDD) (Zhang et al., 2019c) goes
a crucial step forward and provides a margin theory for the multi-class classification setting.
The margin ρ is attained by introducing parameter γ , exp ρ in the disparity discrepancy,

LMDD(h, ψ) = max
h′

γ E
xs∼Ŝ log

[
σh(ψ(xs))(h

′(ψ(xs)))
]

+ E
xt∼T̂ log

[
1− σh(ψ(xt))(h

′(ψ(xt)))
]
,

(34)

where σ is the softmax function. A proper γ can constrain h′ in a hypothesis space of proper
size to avoid overestimation of the generalization bound. Note that in Equation 34, the loss
on the source domain is the standard cross-entropy, while that on the target domain is a
modified cross-entropy to avoid gradient vanishing and ease the optimization of h′.

In principle, DD can be easily extended to regression problems by replacing the classifiers
in Figure 22 with regressors and choosing Ls and Lt as the L1 or L2 loss commonly used
in regression. It has been extended to both keypoint detection (Jiang et al., 2021) and
bounding box localization task (Jiang et al., 2022). To tackle the challenge caused by the
high-dimensional output space in the keypoint detection, Regressive Domain Adaptation
(RegDA) (Jiang et al., 2021) introduces a spatial probability distribution to describe the
sparse density of the output space and uses it to guide the optimization of the adversarial
regressor h′. In an expectation sense, this reduces the size of the hypothesis space of h′ and
avoids overestimation of the generalization bound in Zhang et al. (2019c).

3.2.4 Domain Translation

Domain translation is the task of mapping raw data of text, image, audio, and other data
modality from the source distribution S to the target distribution T . In domain adaptation
problems, we can use translation models, usually based on Generate Adversarial Networks
(GAN) (Goodfellow et al., 2014), to obtain labeled source domain in the target style, i.e.
translated into the target distribution. Training on such stylized source domain can yield
better transferability than models trained on the original source domain.
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Figure 23: (a) The architecture for PixelDA includes a generator network G, an adversarial
discriminator D and a task-specific classifier h on feature extractor ψ. (b) Cycle-consistency
loss: after we translate from source domain to target domain, we should recover the source
data if translating back again. (c) Semantic-consistency loss: translating between domains
should not change the semantic labels of the samples, where f is the labeling function.

GANs reason about the marginal distribution, i.e., from a random vector, the generator
network should synthesize data that resembles one that is drawn from the true distribution.
However, marginal distribution is not enough for domain adaptation, thus Coupled Gen-
erative Adversarial Networks (CoGAN) (Liu and Tuzel, 2016) learns a joint distribution
of multi-domain images from data, i.e., from a random vector, multiple generators should
generate paired data that are from different distributions and share the same labels. By
enforcing a weight-sharing constraint between different generators, CoGAN learns a joint
distribution without the existence of corresponding images in different domains. Then the
shared labels of the target samples are used to train the target model.

A more common objective of domain translation is to learn a mapping G : S → T such
that the generated sample G(x) is indistinguishable from the training samples of the target
domain. As shown in Figure 23, PixelDA (Bousmalis et al., 2017) introduces an adversarial
discriminator D to distinguish between translated samples and target samples,

LGAN(G) = max
D

E
x∼Ŝ log [1−D(G(x))] + E

x∼T̂ log [D(x)] . (35)

The generator G tries to synthesize samples G(x) that look similar to images from the target
domain by minG LGAN(G). The task-specific classifier h and feature extractor ψ are trained
supervisedly on the target-style generated data by minψ,h E(x,y)∼ŜLsup(h ◦ ψ(G(x)),y).

Cycle Consistency. While GAN can learn a mapping between two datasets, the desired
mapping may not be obtained. The source sample may be projected to an irrelevant target
sample, destroying the structure or content of the original samples. Besides, multiple source
samples may be mapped to the same target sample, leading to the well-known problem of
mode collapse (Goodfellow et al., 2014). Therefore, CycleGAN (Zhu et al., 2017) introduces
an additional mapping F : T → S from target to source and adds a constraint of cycle
consistency to reduce the space of possible mapping functions (Figure 23). Mathematically,
cycle consistency requires F and G to be bijections and inverse of each other. In practice,
CycleGAN constrains F (G(x)) ≈ x and G(F (x)) ≈ x, which preserves the structure or
content of samples to obtain more meaningful mappings. CycleGAN has been widely used
in domain adaptation problems, such as image classification (Hoffman et al., 2018), semantic
segmentation (Hoffman et al., 2018), person re-identification (Wei et al., 2018), robotic
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grasping (Bousmalis et al., 2018), object detection (Kim et al., 2019), etc. The idea goes
beyond the field of image translation and is widely used in other fields, such as unsupervised
machine translation (Lample et al., 2017), where the cycle consistency is also called back-
translation. Unsupervised machine translation can further be used for cross-lingual domain
adaptation tasks (Conneau et al., 2018), where a language is a domain.

Semantic Consistency. CycleGAN is a general-purpose translation model for vision
tasks and is apt at style transfer between datasets. However, it is difficult for CycleGAN to
maintain the semantic information. It has been experimentally shown that when mapping
from source to target, the problem of label flipping will easily occur (Bousmalis et al., 2017;
Hoffman et al., 2018). As a result, there will exist a lot of noisy labels in the translated
dataset, hurting the performance of the target model. Thus, ensuring semantic consistency
is important for translation-based domain adaptation. Formally, given the labeling function
f , the labels assigned to sample x should be consistent with that of the translated sample,
i.e., f(x) = f(G(x)) (Figure 23). Since function f is not accessible, several proxy functions
have been proposed to approximate the semantic consistency (Taigman et al., 2017; Hoffman
et al., 2018; Bousmalis et al., 2018). Given a proxy function hp and a distance measure d,
the objective is to reduce the semantic inconsistency,

min
G
Lsc(G, hp) = d(hp(x), hp(G(x))). (36)

DTN (Taigman et al., 2017) and SimGAN (Shrivastava et al., 2017) use the feature extractor
as a proxy function and the goal is to translate the low-level style while keeping the high-level
features invariant. PersonGAN (Wei et al., 2018) uses the foreground crop of the person
image as the proxy function of the person’s identity, which ensures that a person’s identity
remains the same before and after translation. However, the constraint on feature or pixel
space might be too strong, making it difficult to change the low-level style. Therefore, Cycle-
consistent Adversarial Adaptation (CyCADA) (Hoffman et al., 2018) utilizes a pre-trained
source model as a proxy function to encourage generating samples that have consistent
predictions under the function. This proxy function effectively avoids label flipping during
the translation of handwritten digit images, yet it is still not perfect. When faced with
the dataset shift of real-world problems, the predictions on the generated samples are not
reliable and may provide incorrect guidance to G.

When the domain difference is primarily low-level, such as textures, illumination, and
color, translation can effectively close the domain gap. But when the domain is different at
the high level, such as from different camera angles, translation may fail to adapt domains.
Therefore, translation methods at the low-level and adaptation methods at the high-level
mentioned in Section 3.2.1-3.2.3 are complementary and can be combined in practical appli-
cations (Hoffman et al., 2018). For example, Generate to Adapt (Sankaranarayanan et al.,
2018) directly uses the generative task as an auxiliary task to align features across domains.

3.2.5 Semi-Supervised Learning

Unsupervised Domain Adaptation (UDA) is closely related to Semi-Supervised Learning
(SSL) since both of them aim at generalizing from the labeled samples to the unlabeled
samples. The difference is that in SSL, both the labeled and unlabeled samples come from
the same distribution while in UDA, the source and target distributions differ. Thus, SSL
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tasks can be considered as a special case of UDA tasks and some SSL methods can be
applied in UDA tasks. Since there is still no theoretical guarantee for SSL methods in the
UDA scenario, the first question to answer is, under what assumptions can we use SSL in
UDA? There are mainly three assumptions in SSL (Chapelle et al., 2006). (1) Smoothness
Assumption: if two samples x1, x2 residing in a high-density region are close, then so should
be their corresponding outputs y1, y2 . (2) Cluster Assumption: if points are in the same
cluster, they are likely to be of the same class. It can also be interpreted as the Low-density
Separation Assumption, where the decision boundary should lie in the low-density regions.
(3) Manifold Assumption: the high-dimensional data shall lie roughly on a low-dimensional
manifold. Both smoothness assumption and cluster assumption are helpful for classification,
but not for regression problems. Thus SSL is used more commonly in classifier adaptation.
Here we review several SSL methods applied to the UDA problems.

Consistency Regularization encourages consistent predictions for similar data points.
Similar data points are generated by performing different data augmentations on the same
data point. While many augmentation techniques are proposed for images, few are available
for other data formats, such as texts and time series. Thus this type of method is limited to
certain data modalities. Self-Ensemble (French et al., 2018) applies mean-teacher, a typical
consistency regularization method, to image domain adaptation. The teacher model, which
is an Exponential Moving Average (EMA) of the student model, will generate predictions to
train the student model on the target domain. Due to the domain shift, the predictions are
noisy, thus Mutual Mean-Teaching (MMT) (Ge et al., 2020) uses two collaborative networks
jointly optimized under the supervision of mutual teacher models.

Entropy Minimization encourages the model to make confident (i.e., low-entropy)
predictions on unlabeled data. It serves as an auxiliary term in many domain adaptation
methods (Long et al., 2016, 2018; Saito et al., 2018; Shu et al., 2018; Vu et al., 2019). The
risk is that the predictions on the target domain are not reliable, and entropy minimization
may hurt the performance of the model. Thus, Minimum Class Confusion (MCC) (Jin et al.,
2020) introduces a weight for each instance, where uncertain samples have smaller weights
to avoid minimizing entropy on the incorrectly classified samples. MCC further minimizes
the instance-weighted confusion between different classes, which is simple yet frustratingly
effective. Source Hypothesis Transfer (Liang et al., 2020) adopts an information maximiza-
tion loss with a fair diversity-promoting objective, which circumvents the trivial solutions
in entropy minimization that all unlabeled data have the same one-hot encoding.

Pseudo-Labeling produces proxy labels on unlabeled data and uses these noisy labels
together with the labeled data to train the model. In self-training, a confidence threshold
is used to filter out unreliable proxy labels, which may fail in UDA since the model is likely
to be biased towards well-transferred classes while ignoring other hard classes. Thus, Class-
Balanced Self-Training (CBST) (Zou et al., 2018) uses a class-wise confidence threshold.
Still, large noise exists in the generated pseudo labels on the target domain, and the standard
Cross-Entropy (CE) loss has been shown to be sensitive to label noise (Zhang et al., 2017).
Towards this problem, Zhang and Sabuncu (2018) propose the Generalized Cross-Entropy
(GCE) loss as an effective solution (Rusak et al., 2021; Liu et al., 2021a),

LGCE(x, ỹ) = 1/q · (1− hỹ(x)q), (37)

where q ∈ (0, 1] is a hyper-parameter to trade-off between the CE loss and the MAE loss.
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3.2.6 Remarks

Different domain adaptation methods are compared from several perspectives in Table 5.
First, statistics matching, domain adversarial learning, and hypothesis adversarial learning
methods are derived from theory, enjoying theoretical guarantees while domain translation
and semi-supervised learning methods are still in the empirical regime. Second, the former
three categories of methods work in the feature space or the output space and are highly re-
lated to specific tasks, and some are tightly integrated to specific architectures. In contrast,
translation methods work in the input space and are relatively independent of specific tasks.
However, translation models and semi-supervised learning are dependent on specific data
format, and are hard to scale to different modalities. Finally, statistics matching methods
are based on nonparametric distances, which are data-efficient but weak in expressiveness,
thereby more suitable for low-data regimes. In contrast, domain adversarial learning and
hypothesis adversarial learning methods are based on parametric distances, which can only
be measured throughout learning, but are more performant when scaling up data.

Table 5: Comparison between different domain adaptation methods.

Adaptation
Performance1

Data
Efficiency2

Modality
Scalability3

Task
Scalability4

Theory
Guarantee5

Statistics Matching F FFF FFF FF FFF

Domain Adversarial Learning FF FF FFF FF FFF

Hypothesis Adversarial Learning FFF FF FFF FF FFF

Domain Translation FF F F FFF F

Semi-Supervised Learning FF FF FF F F

1 Performance: performance when there are large-scale data in source and target domains.
2 Data Efficiency: performance when there are only small-scale data in source and target domains.
3 Modality Scalability: whether can adapt the model to various modalities, such as text, time series.
4 Task Scalability: whether can adapt the model to different tasks, such as regression, detection.
5 Theory Guarantee: whether the generalization error of target domain can be bounded in adaptation.

Domain adaptation is closely related to pre-training and task adaptation. First, pre-
training can boost the transferability in domain adaptation, since pre-training will reduce
the allowed hypothesis space and decrease the generalization bound on the target domain,
as mentioned in Section 3.2. Thus pre-training on the source domain also serves as the
first step in many domain adaptation methods, such as RegDA (Jiang et al., 2021). Pre-
training also provides some new solutions for domain adaptation. When there exists a large
unlabeled target domain, a feasible solution is to first perform unsupervised pre-training on
the target domain, and then fine-tune with the labeled data on the source domain. This is
widely adopted in cross-lingual adaptation (Lample and Conneau, 2019).

When using pre-trained models for domain adaptation, we will also encounter the prob-
lems in task adaptation, such as the catastrophic forgetting mentioned in 3.1.1. Thus, many
domain adaptation methods babysit the learning rates to avoid catastrophic forgetting
(Long et al., 2015; Ganin and Lempitsky, 2015). Compared with task adaptation, domain
adaptation increases the restriction on the task space, where the task of the source domain
and that of the target domain must be the same. Due to this restriction, domain adaptation
has a strict theoretical guarantee. But this restriction is sometimes hard to satisfy in prac-
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tice since we cannot ensure whether the category on the unlabeled target domain is exactly
the same as the source domain (Busto and Gall, 2017). Therefore, real-world adaptation is
often a mix of task adaptation and domain adaptation. How to explore the transferability
in such a practical open-domain scenario is a problem to be solved.

4. Evaluation

Evaluation serves as a means for (1) measuring the performance of different architectures,
different pre-training and adaptation methods, and (2) understanding the strengths and lim-
itations of different methods. This section will elaborate on the evaluation of transferability,
which is defined by the performance on the target task or domain. We believe that the eval-
uation of different methods should be performed on large-scale datasets for a practical and
meaningful comparison. Thus, in Section 4.1 we list some large-scale datasets that are suit-
able for evaluating transferability in deep learning. Since different methods are often based
on different codebases, a fair comparison between them is rather difficult. To fill this blank,
in Section 4.2 we propose an open-source library, TLlib, to better evaluate transferability of
different methods in a unified framework. Finally, Section 4.3 provides several benchmarks
for evaluating both the cross-task transferability and cross-domain transferability.

4.1 Datasets

To evaluate the transferability in deep learning, we list several datasets that are large-scale
in the number of samples and categories, the richness of tasks, and the diversity of domains.

The General Language Understanding Evaluation (GLUE) (Wang et al., 2019a) is one
of the most famous benchmarks in NLP. As shown in Table 6, it consists of nine sentence or
sentence-pair language understanding tasks, covering a diverse range of dataset sizes, text
genres, and degrees of difficulty. It is widely used to evaluate the cross-task transferability
of different pre-training and task adaptation methods.

Table 6: Descriptions and statistics of the GLUE datasets.

Corpus #Train #Test Metrics Task Domain

CoLA 8.5k 1k Matthews corr acceptability misc.
SST-2 67k 1.8k acc. sentiment movie reviews
MRPC 3.7k 1.7k acc./F1 paraphrase news
STS-B 7k 1.4k Pearson/Spearman corr sentence similarity misc.
QQP 364k 391k acc./F1 paraphrase social QA questions
MNLI 393k 20k matched acc./mismatched acc. NLI misc.
QNLI 105k 5.4k acc QA/NLI Wikipedia
RTE 2.5k 3k acc NLI news, Wikipedia
WNLI 634 146 acc coreference/NLI fiction books

In contrast, there is no common benchmark to evaluate the transferability of different
methods in computer vision. Table 7 lists some of the widely used vision datasets. Food-101,
CIFAR-10, CIFAR-100, SUN397, Stanford Cars, FGVC Aircraft, DTD, Oxford-III Pets,
Caltech-101, Oxford 102 Flowers are used to evaluate the transferability of different archi-
tectures under task discrepancy (Kornblith et al., 2019). ImageNet-R(endition) (Hendrycks
et al., 2021) and ImageNet-Sketch (Wang et al., 2019b) are two variants of the ImageNet,
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mainly used to evaluate the cross-domain transferablity of different architectures and pre-
training methods. DomainNet (Peng et al., 2019) has multiple domains sharing the same
category space, and is used to evaluate the cross-domain transferablity of different domain
adaptation methods under large domain shift.

Table 7: Descriptions and statistics of typical vision datasets.

Dataset #Train #Test #Classes Metric Domain

Food-101 75,750 25,250 101 top-1 photos and real world images
CIFAR-10 50,000 10,000 10 top-1 photos and real world images
CIFAR-100 50,000 10,000 100 top-1 photos and real world images
SUN397 19,850 19,850 397 top-1 photos and real world images
Stanford Cars 8,144 8,041 196 top-1 photos and real world images

FGVC Aircraft 6,667 3,333 100
mean
per-class

photos and real world images

Describable
Textures (DTD)

3,760 1,880 47 top-1 photos and real world images

Oxford-III Pets 3,680 3,369 37
mean
per-class

photos and real world images

Caltech-101 3,060 6,084 102
mean
per-class

photos and real world images

Oxford 102 Flowers 2,040 6,149 102
mean
per-class

photos and real world images

ImageNet-R - 30k 200 top-1

art, cartoons, deviantart, graffiti,
embroidery, graphics, origami,
paintings, patterns, plastic objects,
plush objects, sculptures, sketches,
tattoos, toys, and video games

ImageNet-Sketch - 50k 1000 top-1 sketch

DomainNet-c 33,525 14,604 365 top-1 clipart images
DomainNet-p 50,416 21,850 365 top-1 artistic paintings
DomainNet-r 120,906 52,041 365 top-1 photos and real world images
DomainNet-s 48,212 20,916 365 top-1 sketch

4.2 Library

To make up for the lack of a unified codebase in some areas, we propose an open and ongoing
library, TLlib. This library implements many representative adaptation algorithms in a uni-
fied way, allowing quantitative, fair, reproducible comparisons between different algorithms
and promoting seamless integration of different pre-training or adaptation methods.

Library Usage. First, we give a short description of how to use TLlib using DANN as an
instance. In the original implementation of DANN, the domain adversarial loss, domain dis-
criminator, feature generator, and classifier are tightly coupled together in one nn.Module,
which causes the difficulty of reuse, e.g., the entire algorithm needs re-implementation when
the input data is changed from image to text. Yet in this case, the domain adversarial loss
and the domain discriminator remain unchanged and shall be reused. Therefore, in TLlib,
models and loss functions are decoupled. When using DANN for any case, users need only
to initialize a domain discriminator and pass it to the domain adversarial loss module, and
then use this module in the same way as the cross-entropy loss module defined in PyTorch
(example code below). TLlib provides friendly and coherent APIs for supported algorithms.
Detailed usages of these algorithms can be found at the documentation.
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>>> # define the domain discriminator

>>> from dalib.modules.domain_discriminator import DomainDiscriminator

>>> discriminator = DomainDiscriminator(in_feature=1024, hidden_size=1024)

>>> # define the domain adversarial loss module

>>> from dalib.adptation.dann import DomainAdversarialLoss

>>> dann = DomainAdversarialLoss(discriminator, reduction=’mean’)

>>> # features from the source and target domain

>>> f_s, f_t = torch.randn(20, 1024), torch.randn(20, 1024)

>>> # calculate the final loss

>>> loss = dann(f_s, f_t)

Design Philosophy. TLlib is designed to be extendible by researchers and simple for
practitioners. Currently, there are mainly two types of algorithm implementations. One is to
encapsulate each algorithm in a Trainer, whose typical representative is PyTorch-Lighting.
Users only need to feed the training data to it and do not need to care about the specific
training process. Another strategy is to encapsulate the core loss function in each algo-
rithm, and users need to implement the complete training process by themselves. A typical
representative is PyTorch (Paszke et al., 2019). Although the former method is easier to
use, it is less extendible. Since it is often necessary to adjust the training process in different
transfer learning scenarios, TLlib adopts the latter method for better extendibility. We try
our best to make TLlib easy to start with, e.g., we support the automatic download of most
common transfer learning datasets so that users do not need to spend time on data prepa-
ration. Our code is in PyTorch-style and we provide training examples of different transfer
algorithms in different scenarios, which allows users to quickly adapt to TLlib as long as
they have learned PyTorch before. For more convenient algorithm selection, we provide a
comprehensive benchmark among all those libraries. For faster algorithm reproduction, we
provide training scripts for all the results in the benchmark.

TLlib is released under the MIT License and available at https://github.com/thuml/
Transfer-Learning-Library. Documentation and tutorials are available on its website.

4.3 Benchmark

This section will present a benchmark of typical pre-training and adaptation methods on
the large-scale datasets described in Section 4.1. Since such a benchmark is missing in the
literature, we produce the results using the open library TLlib implemented in Section 4.2.

4.3.1 Pre-Training

Protocols. The transferability of pre-training methods is evaluated on the target task,
where the adaptation process and data augmentations are kept the same for fair comparison.
Hyper-parameters in adaptation are selected by the performance of target validation data.

Results. For the pre-training methods, the transferability cross different tasks and across
different domains should be evaluated. Tables 8 and 9 list the performance on various down-
stream tasks with different architectures and pre-training tasks. It can be concluded that
architectures and pre-training methods have a great impact on the cross-task transferability
of deep networks. Table 10 lists the performance on ImageNet-Sketch and ImageNet-R with
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different architectures and pre-training tasks. Architectures and pre-training strategies also
greatly influence the cross-domain transferability in deep learning.

Table 8: Cross-task transferability benchmark. Results of different architectures and pre-
training methods are reported from the GLUE leaderboard. BiLSTM+ELMo (Peters et al.,
2018) serves as the baseline. GPT (Radford et al., 2018), BERTLarge (Devlin et al., 2019), T5
(Raffel et al., 2020), and ERNIE (Sun et al., 2019b) have different architectures. RoBERTa
(Liu et al., 2019c), XLM (Lample and Conneau, 2019), and SpanBERT (Joshi et al., 2020)
share the same architecture as BERTLarge but employ different pre-training methods.

Model CoLA SST-2 MRPC STS-B QQP MNLIm MNLImm QNLI RTE Avg

Human
Baselines

66.4 97.8 86.3 92.7 80.4 92 92.8 91.2 93.6 88.1

BiLSTM
+ELMo

36.0 90.4 84.9 73.3 64.8 76.4 76.1 79.9 56.8 71.0

GPT 45.4 91.3 82.3 80.0 70.3 82.1 81.4 88.1 56.0 75.2
BERTLarge 60.5 94.9 89.3 86.5 72.1 86.7 85.9 92.7 70.1 82.1
T5 71.6 97.5 92.8 93.1 90.6 92.2 91.9 96.9 92.8 91.0
ERNIE 75.5 97.8 93.9 93.0 90.9 92.3 91.7 97.3 92.6 91.7

RoBERTa 67.8 96.7 92.3 92.2 90.2 90.8 90.2 95.4 88.2 89.3
XLM 62.9 95.6 90.7 88.8 89.8 89.1 88.5 94.0 76.0 86.2
SpanBERT 64.3 94.8 90.9 89.9 89.5 88.1 87.7 94.3 79.0 86.5

Table 9: Cross-task transferability benchmark. Results on image recognition using different
pre-training methods, including SimCLR (Chen et al., 2020) and BYOL (Grill et al., 2020).

Model Pre-Training Food CIFAR10 CIFAR100 SUN397 Cars Aircraft DTD Pets Caltech101 Flowers Avg

ResNet50
Random Init 86.9 95.9 80.2 53.6 91.4 85.9 64.8 81.5 72.6 92.0 80.5
SimCLR 88.2 97.7 85.9 63.5 91.3 88.1 73.2 89.2 92.1 97.0 86.6
BYOL 88.5 97.8 86.1 63.7 91.6 88.1 76.2 91.7 93.8 97.0 87.5

ResNet50 Supervised
Pre-Trained
on ImageNet

87.8 96.8 84.5 64.7 91.7 86.6 75.2 92.5 91.8 97.5 86.9
ResNet101 87.6 97.7 87.0 64.8 91.7 85.6 75.4 94.0 93.1 97.9 87.5
ResNet152 87.6 97.9 87.6 66.0 92.0 85.3 74.9 94.5 93.2 97.4 87.6

Table 10: Cross-domain transferability benchmark. Results are reported from the PyTorch-
Image-Models (Wightman, 2019) on ImageNet using different architectures and pre-training
methods. SSP refers to semi-supervised pre-training on YFCC100M (Yalniz et al., 2019).
WSP refers to weakly supervised pre-training on IG-1B-Targeted (Mahajan et al., 2018).

Model Pre-Training Param Count
ImageNet-Sketch ImageNetR
top-1 top-5 top-1 top-5

ResNet50 Standard
Pre-Trained
on ImageNet

25.6 29.6 46.8 40.4 54.7
ResNet152d 60.2 37.9 58.4 49.3 64.4
ViTlarge, patch16 304.3 51.8 73.7 64.3 76.2

ResNext101 32x8d

Standard

88.8

29.4 48.5 42.6 58.3
SSP 34.1 55.6 49.2 65.5
WSP 54.9 77.5 75.9 86.2
SSP+WSP 56.4 78.9 75.6 87.1
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4.3.2 Task Adaptation

Protocols. We follow the common practice in the community as described in Kornblith
et al. (2019). Training iterations and data augmentations are kept the same for different
task adaptation methods for a fair comparison. Hyper-parameters, such as learning rate
and weight decay, of each method are selected by the performance on target validation data.

Results. We mainly investigate the cross-task transferability between different task adap-
tation methods. Tables 11 and 12 compare the performance of downstream tasks with dif-
ferent task adaptation methods. Note that previous methods usually only report results
on individual datasets, such as Aircraft and Stanford Cars, where regularization tuning
performs better than vanilla fine-tuning by a large margin. But the average improvements
brought by different task adaptation methods on a large number of datasets are still limited.
Thus, we can conclude that the effectiveness of different task adaptation algorithms largely
depends on the relatedness between the target task and the pre-training task.

Table 11: Cross-task transferability benchmark. GLUE performance with different task
adaptation methods, including SMART (Jiang et al., 2020), Adapter-Tuning (Houlsby et al.,
2019) and Diff Pruning (Guo et al., 2021). Results are reported from their original papers.

Model
Task
Adaptation

New Params
Per Task

CoLA SST-2 MRPC STS-B QQP MNLIm MNLImm QNLI RTE Avg

RoBERTa
vanilla 100% 67.8 96.7 92.3 92.2 90.2 90.8 90.2 95.4 88.2 89.3
SMART 100% 65.1 97.5 93.7 92.9 90.1 91.0 90.8 95.4 87.9 89.4

BERTLarge

vanilla 100% 60.5 94.9 89.3 86.5 72.1 86.7 85.9 92.7 70.1 82.1
Adapter 2.10% 59.2 94.3 88.7 87.3 89.4 85.4 85.0 92.4 71.6 83.7
Diff Pruning 0.50% 61.1 94.1 89.7 86.0 - 86.4 86.0 93.3 70.6 -

Table 12: Cross-task transferability benchmark. Accuracy (%) on image classification with
different task adaptation methods: LWF (Li and Hoiem, 2018), DELTA (Li et al., 2019),
BSS (Chen et al., 2019b), Bi-Tuning (Zhong et al., 2020). Results are reproduced by TLlib.

Task
Adaptation

Food CIFAR10 CIFAR100 SUN397 Cars Aircraft DTD Pets Caltech101 Flowers Avg

ResNet50 85.1 96.9 84.1 80.7 87.8 80.1 74.4 93.2 92.9 96.5 87.2
LWF 83.9 96.5 83.6 79.5 87.4 82.2 76.3 94.0 91.7 97.1 87.2
DELTA 83.8 95.9 83.7 73.6 88.1 82.3 75.6 94.2 92.5 97.0 86.7
BSS 85.0 96.6 84.2 80.4 88.4 81.8 74.3 93.3 93.0 96.6 87.4
Bi-Tuning 85.7 97.1 84.3 80.7 90.3 84.8 74.6 93.5 93.4 97.5 88.2

4.3.3 Domain Adaptation

Protocols. We follow the standard protocols for unsupervised domain adaptation (Long
et al., 2015; Ganin and Lempitsky, 2015). Training iterations and data augmentations
are kept the same for different methods for a fair comparison. For each method, hyper-
parameters are selected on one task and then kept the same for all other tasks, requiring the
hyper-parameters of each method to transfer across tasks. This selection strategy is more
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executable than the importance-weighted cross-validation (Sugiyama et al., 2007) and can
be applied to various practical applications, thus it is widely adopted by many competitions.

Results. Tables 13 and 14 give the classification performance of different domain adapta-
tion methods on DomainNet and ImageNet. We find that many state-of-the-art methods on
small datasets do not perform well on large-scale datasets. This field shall pay more atten-
tion to improving the cross-domain transferability of deep models on large-scale datasets.

Table 13: Cross-domain transferability benchmark. Accuracy (%) for unsupervised domain
adaptation on DomainNet. Results are reproduced from TLlib.

DomainNet c�p c�r c�s p�c p�r p�s r�c r�p r�s s�c s�p s�r Avg

ResNet101 32.7 50.6 39.4 41.1 56.8 35.0 48.6 48.8 36.1 49.0 34.8 46.1 43.3
DAN (2015) 38.8 55.2 43.9 45.9 59.0 40.8 50.8 49.8 38.9 56.1 45.9 55.5 48.4
DANN (2016) 37.9 54.3 44.4 41.7 55.6 36.8 50.7 50.8 40.1 55.0 45.0 54.5 47.2
ADDA (2017) 38.4 54.1 44.1 43.5 56.7 39.2 52.8 51.3 40.9 55.0 45.4 54.5 48.0
JAN (2017) 40.5 56.7 45.1 47.2 59.9 43.0 54.2 52.6 41.9 56.6 46.2 55.5 50.0
CDAN (2018) 40.4 56.8 46.1 45.1 58.4 40.5 55.6 53.6 43.0 57.2 46.4 55.7 49.9
MCD (2018) 37.5 52.9 44.0 44.6 54.5 41.6 52.0 51.5 39.7 55.5 44.6 52.0 47.5
MDD (2019c) 42.9 59.5 47.5 48.6 59.4 42.6 58.3 53.7 46.2 58.7 46.5 57.7 51.8

Table 14: Cross-domain transferability benchmark. Accuracy (%) for unsupervised domain
adaptation on ImageNet-scale datasets. Results are reproduced from TLlib.

Task ImageNet�ImageNet-R ImageNet�ImageNet-Sketch
Model ResNet50 ig resnext101 32x8d

Source Only 35.6 54.9
DAN (Long et al., 2015) 39.8 55.7
DANN (Ganin et al., 2016) 52.7 56.5
JAN (Long et al., 2017) 41.7 55.7
CDAN (Long et al., 2018) 53.9 58.2
MCD (Saito et al., 2018) 46.7 55.0
MDD (Zhang et al., 2019c) 56.2 62.4

5. Conclusion

In this paper, we investigate how to acquire and apply transferability in the whole lifecycle
of deep learning. In the pre-training section, we focus on how to improve the transferability
of the pre-trained models by designing architecture, pre-training task, and training strategy.
In the task adaptation section, we discuss how to better preserve and utilize the transferable
knowledge to improve the performance of target tasks. In the domain adaptation section, we
illustrate how to bridge the domain gap to increase the transferability for real applications.
This survey connects many isolated areas with their relation to transferability and provides
a unified perspective to explore transferability in deep learning. We expect this study will
attract the community’s attention to the fundamental role of transferability in deep learning.
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