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ABSTRACT
Domain Adaptation (DA) aims at transferring knowledge from a
labeled source domain to an unlabeled target domain. While re-
markable advances have been witnessed recently, the power of DA
methods still heavily depends on the network depth, especially
when the domain discrepancy is large, posing an unprecedented
challenge to DA in low-resource scenarios where fast and adaptive
inference is required. How to bridge transferability and resource-
efficient inference in DA becomes an important problem. In this
paper, we propose Resource Efficient Domain Adaptation (REDA),
a general framework that can adaptively adjust computation re-
sources across “easier” and “harder” inputs. Based on existing multi-
exit architectures, REDA has two novel designs: 1) Transferable
distillation to distill the transferability of top classifier into the early
exits; 2) Consistency weighting to control the distillation degree via
prediction consistency. As a general method, REDA can be easily
applied with a variety of DA methods. Empirical results and analy-
ses justify that REDA can substantially improve the accuracy and
accelerate the inference under domain shift and low resource.
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1 INTRODUCTION
Recent years have witnessed great progress in Deep Neural Net-
work (DNN) in many machine learning problems and applications.
Although most state-of-the-art DNN models have achieved increas-
ingly higher accuracy, they are often data-hungry and computation-
consuming. In the real world, however, not all problems have large-
scale datasets and not all devices can endure the heavy computation
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burden of DNN. For problems lacking labeled data (e.g. real-world),
it is reasonable to transfer knowledge from a related domain (e.g.
simulation) with a large-scale labeled dataset, though performance
degradations may happen due to the dataset shift [42, 65].

To tackle the dataset shift problem between the source and target
domains, a variety of domain adaptation (DA) [10, 36, 37, 49, 69]
methods have been proposed, aiming to push the accuracy of DA
towards that of supervised learning. However, most DA methods
focus on improving the accuracy while rare attention has been
given to speeding up the inference on the unlabeled target domain,
thereby a high computation cost is with most existing DA models.
Further, in many practical applications, reducing the inference
time of those models would be beneficial or even compulsory. For
instance, labeled data is expensive in robotics, therefore, generating
training data through simulation and then applying the models
in real scenarios becomes a common technique [3, 30]. In such a
simulation to real setup, transfer models with deep neural networks
will face the problem of high computation cost, making the industry
robots hard to respond quickly to fast manufacturing. Meanwhile,
the power of DA methods still heavily depends on the network
depth, especially when the domain discrepancy is large, posing an
unprecedented challenge to DA in low-resource scenarios where
both fast and adaptive inference is required.

18 34 50 101
depth

45

50

55

60

65

70

ac
cu

ra
cy

ga
in

(%
)

source only

DANN

CDAN

MDD

(a) Accuracy

18 34 50 101
depth

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ac
cu

ra
cy

ga
in

(%
)

source only

DANN

CDAN

MDD

(b) Accuracy gain

Figure 1: Accuracy and accuracy gain by domain adaptation
as a function of the depth of ResNets on Office-Home.

Motivated by previous work on supervised learning of resource-
efficient models [27], we aim to speed up the inference of DAmodels
on the target domain by reducing the computation spent on “easier”
inputs. Unfortunately, these models fail to generalize to the target
domain due to the dataset shift problem. Even after introducing
some state-of-the-art DA methods, they still cannot reach a satis-
fying balance between speed and accuracy in our experiments. A
natural question arises: why is it so difficult to be simultaneously
fast and accurate in the DA setup? Before answering this question,
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Table 1: Comparison of the proposed REDA framework with several existing classification models

Method Adaptive Inference Domain Adaptive Adaptive Distillation

ResNet [22] ✘ ✘ ✘

DANN [10] ✘ ✔ ✘

CDAN [37] ✘ ✔ ✘

MSDNet [27] ✔ ✘ ✘

Skipnet [63] ✔ ✘ ✘

REDA (Proposed) ✔ ✔ ✔

we need to analyze some observations first. Observation 1: When
the domain gap is within a certain range, a deeper network can
improve both accuracy and accuracy gain yielded by the adaptation
module (Figure 1(a), 1(b), see Section 4.3 for details). Observation 2:
When the domain discrepancy is decreased, a shallower network is
enough to reach similar accuracy on the same target domain. Ob-
servation 1 tells us that an effective way to enhance transferability
is to increase the network depth during training. Observation 2
indicates that small networks could exhibit comparable test error
when the domain gap decreases and using deep networks is wasting
computational resources. Therefore, to achieve a balance between
speed and accuracy, the architecture during training and inference
should not be identical. In other words, we need a deeper neural
network during training to attain high accuracy and a shallower
one during testing to speed up the inference.

Based on the above observations and analyses, we propose a
novel framework called REDA, enabling Resource Efficient Domain
Adaptation. First, we tailor the popular multi-exit architectures [27]
in IID setup into the domain adaptation scenario. Further, since
deeper networks are more transferable as in Observation 1, REDA
embeds adaptation modules to deeper networks during training.
Due to the weak transferability of shallower networks, we propose a
novel Transferability Distillation (TransDistill) technique, through
which deeper networks can help shallower ones transfer better by
distilling the transferability of top classifier into the early exits.
Meanwhile, we also propose a novel design of consistency weight-
ing to control the distillation degree via prediction consistency. Our
contributions are summarized as follows:

• To our knowledge, no previous work has discussed how to
save computation resources of DA models, and the proposed
REDA is the first general framework that allows dynamic
resource adaptation across domains.

• Weexplore the impact of depth on domain adaptation through
novel experiments. Based on these empirical insights, we pro-
pose TransDistill, which is the key module for fast inference
of DA methods.

• We conduct extensive experiments on three standard DA
datasets and demonstrate that REDA can speed up inference
on all datasets under guaranteed accuracies.

2 RELATEDWORK
Domain Adaptation. Domain adaptation is proposed to alle-

viate the dataset shift problem between the source and target do-
mains [49]. It finds wide applications in computer vision [17, 24, 52]
and natural language processing [6, 13]. Early DA methods attempt

to bridge the source and target domains through learning domain-
invariant representations [15, 43] or instance importances [14, 28].
Since DNNs achieved success, adaptation modules have been em-
bedded into deep neural networks. 1) Moment matching is used
to minimize the distribution discrepancy for aligning feature dis-
tributions across domains [35, 36, 38, 39, 58, 60]. 2) Adversarial
training, which was first proposed in DANN [10], becomes popular
recently [11, 37, 56, 57]. It takes the spirit from Generative Adver-
sarial Networks (GANs) [16] and introduces a domain discriminator
which encourages the feature extractor to learn domain-invariant
features. CDAN [37] generalizes DANN by aligning features in a
class-conditional adversarial manner. MDD [69] establishes a new
domain adaptation margin theory. ADDA [57], MADA [45], and
MCD [53] extend DANN to architectures with multiple feature
extractors or multiple discriminators to reduce domain discrepancy.
CyCADA [25] performs adaptation at both pixel and feature levels.
Many novel methods have emerged recently [46, 54, 62, 70]. For in-
stance, Ciga et al. [5] introduced domain discriminators at multiple
layers of deep networks. However, we found that simply applying
DA loss to multiple layers in multi-exit architectures [27] is not
satisfactory. Thus we propose REDA to improve the transferability
of DNN for low-resource scenarios.

Adaptive Inference. The key idea of adaptive inference is to
save the computation time of “easy” samples during inference so
that the overall computation is reduced while the accuracy remains
unchanged. Common methods fall into three categories. 1) Skip net-
works selectively skip some layers during testing, thereby reducing
the inference time. Many selection strategies have been proposed,
including skipping convolutional blocks [8, 63, 64] or channel-wise
pruning [34] through reinforcement learning, and adaptive network
topology by introducing gate for each layer [29, 59]. Meanwhile,
2) Dynamic recursive network has a small computation cost itself.
To improve the accuracy of “hard” examples, the same block might
be executed multiple times during inference [20, 33, 41]. Further, 3)
Multi-exit architectures are a family of architectures with multiple
classifiers at different depths of the network. Early exits run faster,
while later ones usually achieve higher accuracy. BranchyNet [55]
first proposes multi-exit architecture and adds early exits to LeNet,
AlexNet, and ResNet. MSDNet [27] solves the issue that early ex-
its lack coarse-level features and interfere with later classifiers,
by introducing multi-scale feature maps and dense connections.
Graph HyperNetwork [67] has found better multi-exit networks
through neural architecture search (NAS). Most of the multi-exit
architectures including MSDNet and BranchyNet minimize the sum
of cross-entropy loss of all exits. Among these methods, we focus
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Figure 2: The Resource Efficient Domain Adaptation (REDA) framework includes M = 3 cascaded feature extractors (orange)
andM label predictors (blue). Training loss combines the label prediction loss (dark blue) of all classifiers, the DA loss (purple)
of the top classifier, and the TransDistill loss (green) between the bottomM −1 exits and the top classifier. (Best viewed in color)

our attention on multi-exit architectures due to their straightfor-
ward implementation and superior accuracy. We will discuss them
in more details in Section 3.1.

Knowledge Distillation. Knowledge distillation is a method to
transfer knowledge from complex models to simple models. It has
found increasingly wide adoptions in many applications, including
network compression [26, 48], defending against adversarial attack
[44], heterogeneous architecture transfer [12], generating pseudo-
labels in omni-supervised learning (a.k.a. data distillation) [50],
avoiding catastrophic forgetting in life-long learning [32] and so on.
Knowledge distillation is also used to transfer knowledge between
different domains [1] or different tasks [31] (through distilling the
feature maps) to increase the generalizability of the student models.

Table 1 compares REDA with several well-known or related
models. As far as we know, REDA is the first general framework
to speed up the inference dynamically in domain adaptation. The
transferability distillation (TransDistill) in REDA is different from
the knowledge distillation [47, 68] used in supervised learning. First,
TransDistill enhances the transferability of multi-exits on fully
unlabeled target domains, while the knowledge distillation attempts
to improve the accuracy of shallower neural networks with labeled
data. Further, TransDistill is the first one to adaptively adjust the
distillation according to the consistency of the predictions on the
unlabeled target domain, which proves effective in our experiments.

3 REDA: RESOURCE EFFICIENT DOMAIN
ADAPTATION

In this paper, we present Resource Efficient Domain Adaptation
(REDA), a general framework to dynamically reduce the inference
time for different DA methods. We mainly focus our study on the
standard DA setup, Unsupervised Domain Adaptation (UDA), with a
labeled source domainS = {(xis ,yis )}

ns
i=1 ofns labeled examples and

an unlabeled target domain T = {xjt }
nt
j=1 of nt unlabeled examples.

3.1 Multi-Exit Architectures in IID Setup
To accelerate inference in the unlabeled target domain, we first
explore how supervised learning dynamically reduces computation
resources. Among various adaptive inference methods, we adopt
multi-exit architectures as they are easier to implement and show
higher performance in practice. Given an input x, multi-exit archi-
tectures withM exits will outputM class-probability distributions
{ŷ(1), ŷ(2), ..., ŷ(M )}. Wewill useMSDNet [27] as an example. Figure
2 briefly illustrates the key insights of MSDNet (depicted in yellow).
To improve the accuracy of early classifiers in the lower layers,
MSDNet keeps multi-scale feature maps throughout the network.
The first layer produces the original S representations by down-
sampling (along the vertical black line). Multiple scales ensure that
even the early exits have access to coarse-level features, which are
essential for the accurate inference of early exits. The subsequent



layers are divided into M blocks and each block corresponds to an
equivalent feature extractor and a classifier. The dense connections
between layers prevent early classifiers from interfering with later
ones. However, those connections are simplified since our focus is
on how to improve the transferability of multi-exit architectures.

In the independent and identically distributed (IID) setup, MSD-
Net substantially outperforms ResNets and DenseNets when the
computational budget is limited. However, when the training and
test datasets come from different domains, MSDNet often lags be-
hind ResNets (Figure 4(c)). The weak transferability of MSDNet
is closely related to its built-in design. The coarse-level features
of early exits have large cross-domain distribution discrepancies
since they are from shallow networks. Because MSDNet performs
unsatisfactorily when the IID assumption fails, it is essential to
introduce existing DA methods into the multi-exit architectures.

3.2 Multi-Exit Architectures in DA Setup
As multi-exit architectures have multiple exits G = {G(1), ...,G(M )}

at different depths, a natural idea is to perform domain adapta-
tion on the features of each exit. Take DANN [10] as an instance.
DANN introduces a minimax game into domain adaptation, where
a domain discriminator attempts to distinguish the source from
the target, while a feature extractor tries to fool the domain dis-
criminator. Thus, we need to introduceM domain discriminators
D = {D(1), ...,D(M )} in multi-exit architectures. Feature extractors
F are forced to learn domain-invariant representations at all depth
to fool the domain discriminators. The extension of the two-player
game into multiple domain discriminators can be formalized as

min
F,G

max
D

M∑
m=1
E(xs ,ys )∈SLCE (̂y

(m)
s , ys )

− λEx∈S∪TLCE(D
(m) (̂f (m)), d),

(1)

whereLCE is the cross-entropy loss, f̂ (m) = F (m)(x) is the feature of
them-th layer learned to confuse the domain discriminator D(m), d
is the domain label, and λ is the trade-off hyper-parameter between
source cross-entropy loss and the DA loss.

Many domain adaptation methods, including DANN [11] and
CDAN [37], only align high-layer features. Due to the vanishing
gradient problem of back-propagation, lower-layer features might
remain misaligned. It seems that Equation (1) can fill this gap by
aligning features of different depths at the same time. Unfortunately,
our experiments show that introducing domain discriminators at
the low levels does not help the top classifier achieve better transfer-
ability and sometimes even deteriorate its performance. Why does
this happen? Yosinski et al. [65] revealed that features of different
depths have different transferability. Besides, adversarial DA meth-
ods tend to sacrifice discriminability for transferability [4] and early
exits often fail to balance between those two aspects. Thus, directly
aligning the low-layer features may even worsen transferability.
Our experiments (Section 4.3) also indicate that the depth of neural
networks has a huge impact on the transferability of features. It is
obvious that the early exits are faster while the later ones are more
transferable. Then a natural question is: how to have them both?

3.3 Transferability Distillation
Towards overcoming the challenges when applying domain adapta-
tion in multi-exit architectures, we propose Transferability Distilla-
tion (TransDistill), through which the top classifier can help the
lower ones in the early exists to improve their transferability. In
this paper, we focus on the predictions of all classifiers following
[19, 23]. First, we denote the input on the target domain as x (omit
subscript t for clarity) and the corresponding logit output of the
m-th exit as z(m). Meanwhile, the temperature-scaled probability
ŷ
(m)

k that the instance belongs to the k-th class is given by

ŷ
(m)

k =
exp(z(m)

k /T )∑C
k ′=1 exp(z

(m)

k ′ /T )
, (2)

where T is the temperature and C is the number of classes. Vanilla
softmax output can be regarded as a special form of ŷ(m) when
T = 1. Note that, ŷ(m)

k indicates the confidence that x belongs to the
k-th class at them-th exit. In this way, ŷ(m) measures the knowledge
transferred from the source domain to the target domain by the
m-th classifier, although ŷ(m) may not agree with the ground truth
label y (we will come back to this problem in Section 3.4).

According to our experiments (see Figure 1(b)), deeper networks
imply better transferability. Hence we use the top classifier (exit
M) as the teacher and the remaining shallower classifiers (exit
m,m ∈ [1,M − 1]) as students. To encourage students to learn from
the teacher, we try tominimize the Jensen-Shannon Divergence (JSD)
[7, 9] between their temperature-scaled probability distributions,

L
(m)

distill(x) = JSD(̂y(m), ŷ(M )). (3)

Note that the teacher’s prediction ŷ(M ) is treated as constant when
computing the gradient for L(m)

distill(x), since what we want is that
only the students learn from the teacher but not vice versa. JSD
measures the discrepancy between two probability distributions p
and q and its definition can be formalized as

JSD(p, q) =
1
2
KL(p,m) +

1
2
KL(q,m) (4)

where m =
1
2
(p + q) and KL(p, q) =

∑C
k=1 pk log

(pk
qk

)
. Compared

with Kullback-Leibler divergence [21], JSD is symmetric and finite.
By minimizing the JSD between the probability predictions of the
top classifier and the remaining shallower classifiers, we can distill
the transferability of the top classifier into the early exits. Since this
kind of distillation is tailored into the domain adaptation setup and
thus successfully distills the transferability from the top layer to
shallower layers, we call it Transferable Distillation (TransDistill).

3.4 Consistency Weighting
As mentioned before, there is still a problem with distillation in the
unsupervised domain adaptation scenario. The prediction of the
deeper network may not be consistent with the ground-truth label,
thus the guidance from the top exit might be wrong occasionally,
which is harmful to the early exits. To enable safer transfer, we
further introduce a novel consistency weighting mechanism to
adaptively adjust the transferability distillation loss.
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Given the input data x, we can perform data augmentation twice
to obtain x1 and x2 (see Figure 3). Since the data augmentation is
performed randomly, x1 and x2 are usually different. Suppose the
predictions of the teacher model are ŷ1 and ŷ2. In an unsupervised
scenario, we still cannot judge whether ŷ1 and ŷ2 are correct or not.
Yet one thing is for sure. When ŷ1 and ŷ2 are correct, they must be
consistent with each other. Otherwise, when their predicted labels
are inconsistent, at least one of the predictions is wrong, and it is
not wise to distill the knowledge from top exit to the early exits at
this time. Hence, we define the consistency weighting scheme as

wconsistent(x) = 1(hŷ1 = hŷ2) + 1(hŷ1 , hŷ2 ) · α, (5)

where h is the labeling function, 1 is the indicator function and α
is a trade-off hyperparameter. We should place less importance on
an instance whose predictions of different data augmentations are
inconsistent when distilling the transferability from the top exit.
We set the value of α much smaller than 1 to achieve this goal.

Finally, integrating the distillation loss in Equation (3) and the
consistency weighting in Equation (5), we achieve theTransDistill
(TD) loss as

L
(m)

TD (x) = w(M )

consistent(x) · JSD(̂y
(m), ŷ(M )). (6)

In this way, the proposed consistency weighting mechanism can
control the distillation degree via prediction consistency of the top
classifier. In summary, this new TransDistill loss has two important
insights. First, since the features extracted by the shallow neural
networks are hard to be aligned directly, we adopt transferable
distillation to distill the transferability of the top classifier into the
early exits. Secondly, since the transferability varies across different
instances, we use the consistency of predictions corresponding to
each instance to reweigh the distillation loss as in Equation (3).

3.5 REDA with Transferability Distillation
Resource Efficient Domain Adaptation (REDA) can be implemented
by integrating the TransDistill loss in Equation (6) with existing
DA methods. The two-player minimax game in Section 3.2 becomes

min
F,G

max
D

M∑
m=1
E(xs ,ys )∈SLCE (̂y

(m)
s , ys )

− λ Ex∈S∪TLCE(D
(m) (̂f (m)), d)

+ µ
M−1∑
m=1
Ext ∈TL

(m)

TD (xt ),

(7)

where µ is a hyper-parameter for the TransDistill loss. The entire
framework is illustrated in Figure 2.

The TransDistill loss is general to readily work with a variety of
existing DA methods, turning them into REDA approaches. Take
Margin Disparity Discrepancy (MDD) [69], which is the current
state-of-art DA method, for another instance. MDD uses an adver-
sarial classifier G′ to maximize the margin disparity discrepancy:

max
G′

Dγ (S,T) = γExs ∈S log ©­«
exp(̂yadvs [hŷ(M )

s
])∑

j exp(̂yadvs [j])

ª®¬
+ Ext ∈T log ©­«1 −

exp(̂yadvt [hŷ(M )
t

])∑
j exp(̂yadvt [j])

ª®¬ ,
(8)

where γ is the hyperparameter corresponding to the margin, ŷadv is
the output of the adversarial classifier and h is the labeling function.
The objective of classifier G and feature extractor F is to minimize
the cross-entropy loss on the source domain, the margin disparity
discrepancy of the top exit and the transferability distillation loss:

min
F,G

max
G′

M∑
m=1
E(xs ,ys )∈SLCE (̂y

(m)
s , ys )

+ λ Dγ (S,T)

+ µ
M−1∑
m=1
Ext ∈TL

(m)

TD (xt ),

(9)

where µ is a hyper-parameter for the TransDistill loss. The entire
framework is shown in Figure 2, which is the samewith Equation (7).
As can be confirmed, the REDA framework is general to incorporate
a variety of DA methods without modifying the architecture.

In summary, our contributions are highlighted as follows. We
propose a unified framework called Resource Efficient Domain
Adaptation (REDA), which is not only fast and adaptive at inference,
but also friendly with various existing DA methods. We design a
novel transferability distillation loss function that can overcome
the domain shift problem in the lower layers of the neural network
for early exits and speed up the inference on the unlabeled domain.

4 EXPERIMENTS
We evaluate the effectiveness of REDA with several state-of-the-art
domain adaptation methods on three real-world domain adapta-
tion datasets: Office-31, Office-Home, and VisDA-2017. Code is made
available at https://github.com/thuml/Transfer-Learning-Library.

4.1 Setup
Datasets. Office-31 contains 4, 625 images and 31 categories

from 3 domains: Amazon (A), Webcam (W), DSLR (D). Office-Home
includes 15, 500 images and 65 classes collected from 4 domains:
Artistic images (Ar), Clip Art (Cl), Product images (Pr), and Real-
World images (Rw). VisDA-2017 is a simulation-to-real dataset with
12 categories and over 280K images from two domains: Synthetic
and Real. On each dataset, we randomly split the dataset from both
domains and use the first 80% for training and the remaining 20%
as the test set. For a fair comparison, we keep the split of each
dataset the same for different methods.

Training Details. We implement ResNet-based methods and
MSDNet-based methods both pretrained from ImageNet [51] in

https://github.com/thuml/Transfer-Learning-Library
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Figure 4: Accuracy (top-1) of anytime prediction as a function of compute budget for unsupervised DA (UDA) on three datasets.

PyTorch [61]. Unless extra specifications, the MSDNet hasM = 5
exits in our experiments and one for every seven layers. We set the
learning rate of the new layers and the classifier layers 10 times
larger than that of the pre-trained layers. We adopt mini-batch SGD
with a batch-size of 28, and Nesterov momentum with a momen-
tum weight of 0.9 and a weight decay of 0.001. Deep Embedded
Validation (DEV) [66] is conducted to select the hyper-parameters.
We find that for REDA, λ = 1, µ = 1, T = 2.5, α = 0.5 works
well on all datasets. All models are trained for 10k , 15k , and 30k
iterations on Office-31, Office-Home, and VisDA-2017 respectively.
When calculating the consistency weight, we use the common data
augmentation pipeline: first, resize to 256, then crop to 224 and
flip randomly. We run each experiment three times and report the
average accuracy on the test set of the target domain.

Tasks. We evaluate REDA mainly on two tasks: anytime predic-
tion and budgeted batch classification. 1) In the anytime prediction
setting [18], we don’t know the computational budget for each in-
stance in advance and the models are forced to output their most
up-to-date prediction at an arbitrary time. On each dataset, we av-
erage the accuracy of all the tasks and plot the anytime prediction
graph. 2) In the budgeted batch classification setting, the model
is asked to classify a group of examples given a total amount of
computational budget B. Therefore, the model can allocate the com-
putation to each sample in advance. We use dynamic evaluation
following Huang et al. [27]: “easy” instances will exit early while
“hard” examples will propagate through the entire networks. The
difficulty of each instance is measured by confidence, i.e. the max
value of the softmax output. We find the confidence threshold for
each exit on the validation set. During the test phase, the inference
will stop early when the confidence exceeds the threshold limit of
the current exit.

Baselines. We compare REDA with several baselines, including
MSDNet [27], MSDNet+M×DA (MSDNet with DA loss on all M
exits; See Section 3.2 for more details), ResNets [22] with depth
varying from 18 to 50 layers, and ResNets+DA (Standard ResNets
with different DA methods, including mainstream ones: DANN
[11], CDAN [37], and the new state-of-the-art:MDD [69].

4.2 Empirical Results
Office-31. Weevaluate the performance onOffice-31withDANN

as the base DA method. There are 6 tasks in Office-31 and we re-
port the average accuracy. As shown in Figure 4(a), REDA+DANN
yields a larger boost than any other method, especially when the
budget is ≤ 0.2×1010 FLOPS. It’s astonishing that while the top clas-
sifier of MSDNet has similar accuracy asResNet50, the bottom exit
of REDA+DANN achieves higher accuracy thanResNet50+DANN.
There are two possible reasons. First, Chen et al. [4] reveal that
DANN sacrifices discriminability for transferability. Yet we have
implicitly improved the discriminability of features through mini-
mizing the class disagreement between different exits. More impor-
tantly, most samples of the Office-31 dataset are easy to classify, yet
hard to transfer between domains. REDA+DANN improves the
transferability of early exits through TransDistill. Thus, most sam-
ples can be correctly classified by the early exits of REDA+DANN.

Office-Home. We evaluate our method on Office-Home taking
MDD as the base DA method. There are 12 tasks in Office-Home
and we report the average accuracy. Note that the accuracy of
MSDNet+5×MDD always drops to zero, probably because the low-
level features are not suitable for adversarial training in MDD.
Thus we didn’t compare it with other methods. As shown in Figure
4(b), REDA+MDD substantially outperforms any other methods
in the anytime prediction setting when the budget is ≤ 0.4 × 1010
FLOPS. In particular, REDA+MDD achieves 15% ∼ 17% higher
accuracy than MSDNet when the budget ranges from 0.05 × 1010
to 0.2×1010 FLOPS.REDA+MDD also achieves better performance
than ResNet34+MDD while taking less computational budget.

VisDA-2017. The anytime prediction and dynamic evaluation
results on VisDA-2017 are presented in Figure 4(c) and Figure 5 re-
spectively.We adoptCDAN as our base DAmethod. The first exit of
REDA+CDAN is ∼7% better than MSDNet+5×CDAN, therefore
taking ∼2× times fewer FLOPS to achieve the same classification
accuracy when doing the dynamic evaluation. It is inspiring that the
top classifier of REDA+CDAN achieves ∼3% higher accuracy than
ResNet34+CDAN while taking less computational cost. In com-
parison, the top classifier of MSDNet lags behind its counterpart
ResNet34, achieving ∼6% lower accuracy.



Figure 5: Accuracy (top-1) of budgeted batch classification
on VisDA-2017 dataset as a function of compute budget.

4.3 Insight Analysis
Depthmatters. We explore how the depth of ResNets influences

the performance of DA methods, including DANN, CDAN, and
MDD. Figure 1(a) shows the average performance of ResNets on
Office-home. As the depth of ResNets increases, the accuracy of the
baseline (w/o DA) increases and it’s easy to think that the accuracy
gain brought by DA should continue to decrease. Yet we’re surprised
to find that the accuracy gap between MDD and w/o DA enlarges
as the depth increases from 18 to 50 (see Figure 1(b)). We find similar
results onCDAN. Why does this trend happen?We argue that both
MDD and CDAN rely on a prior that the features extracted by the
ResNets backbone are clustered well by category. The deeper the
network, the better the prior is satisfied, thus the larger the gap
between the accuracy of w/ DA and w/o DA.
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Figure 6: dH∆H(S,T) of bottom exit and top exit on Office-
Home tasks. MSDNet was trained with CDAN loss added to
each exit.

Where exactly does the larger accuracy gap come from? We
analyze it based on the learning bound of domain adaptation [2,
40]. Denote the hypothesis space of classifier G as H , then the
probabilistic bound of the target risk is given by ϵT (G) ≤ ϵS(G) +
1
2dH∆H(S,T) + λ, where ϵS(G) is the source risk, dH∆H(S,T) is
a measure of domain discrepancy, and λ is the error of the ideal
joint hypothesis G∗ ∈ H . As the network gets deeper, ϵS(G) and λ
would decrease, resulting in the accuracy increase in all methods.
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We further calculate dH∆H(S,T) on Office-Home with MSDNet.
We observe that dH∆H(S,T) of the top exit is always smaller than
that of the bottom exit (Figure 6), implying that increasing network
depth can reduce domain discrepancy.

Ablation study. To justify that TransDistill and DA loss of
the top classifier are the sources of performance gains, we do an
ablation study using MSDNet (with M = 5 exits, one for every
fourth layer) on Office-31. Note that we use TD to refer to Trans-
Distill. Figure 7 reveals that TransDistill and CDAN are both vital
since REDA w/o TD does a bad job when the computation budget
is small while REDA w/o CDAN achieves low overall accuracy.
Surprisingly,MSDNet+5×CDAN+TD, which adds CDAN loss to
all exits and TransDistill loss to all early exits, is less accurate than
REDA. The result indicates that the DA loss on the early exits is un-
necessary. Thus, REDA provides a better way to improve shallow
neural networks’ transferability.

Effect of consistency weighting. We further examine the de-
sign of consistency weighting and adopt TransDistill and Trans-
Distill (w/o consistency weighting) on Office-Home. Table 2 shows
that consistency weighting can improve the accuracy of all exits
effectively. To verify how consistency weighting works, we con-
ducted the following experiment. On the Office-Home Ar→Cl task,
we trained the ResNet50 with MDD loss. Every 1000 iterations,
we calculated the accuracy of all instances and the accuracy of
consistent instances on the target domain. Given data input x and
ground truth y on the target domain, the model has two predictions
ŷ1 and ŷ2 since we do data augmentation twice. The accuracy of

all instances is defined by
∑
(x,y)∈T 1(hŷ = hŷ1 )

|T |
and the accuracy

of consistent instances is defined by
∑
(x,y)∈T 1(hŷ1 = hŷ2 = hy)∑

(x,y)∈T 1(hŷ1 = hŷ2 )
.

Figure 8 shows the results. The accuracy of consistent instances is
about 20% higher than the accuracy of all instances. Therefore, the
consistency weighting can filter out some instances with incorrect
predictions. It has two benefits in the unsupervised scenarios. First,
it improves the transferability of the early exits since it reduces the
incorrect distillation from the teacher model. Second, it improves



Table 2: Ablation study on consistency weighting. Accuracy (top-1) ofM = 5 exits on Office-Home. DA loss is MDD.

Method Exit Avg Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr

REDA (w/o
consistency
weight)

0 54.8 41.9 63.5 64.8 44.0 58.7 59.9 41.8 44.9 66.1 52.9 48.9 70.7
1 62.9 49.3 69.1 71.8 56.6 65.9 67.9 55.4 51.4 72.5 62.6 55.0 77.3
2 64.5 50.6 70.9 72.5 59.1 67.1 69.2 54.7 52.3 74.2 69.8 56.2 76.9
3 64.8 51.1 70.8 72.0 61.1 66.1 69.4 56.6 52.9 75.2 68.3 55.6 78.4
4 66.2 52.3 71.6 75.7 61.9 68.0 70.2 58.2 54.3 76.8 70.2 55.8 79.8

REDA (TD)

0 56.8 43.8 63.9 67.1 46.1 63.7 63.1 44.7 45.2 67.0 55.4 49.8 72.2
1 63.9 50.8 69.0 73.1 58.2 67.0 70.2 55.6 50.7 73.9 65.4 55.1 77.6
2 65.2 52.0 70.9 73.2 60.9 67.3 69.8 57.2 53.6 74.5 69.1 56.2 78.2
3 65.9 52.5 71.1 72.9 60.3 67.8 70.8 58.2 54.6 75.6 71.0 56.6 79.6
4 67.0 53.7 71.1 75.6 63.0 67.9 72.1 58.6 55.1 76.8 71.0 57.6 81.2
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Figure 8: The accuracy of all instances and the consistent
instances on Office-Home task Ar→Cl.

the transferability of the entire network, thereby improving the
accuracy of the top exit.

5 CONCLUSION
In this paper, we uncovered that increasing network depth during
training can improve the accuracy gain from adaptation modules,
while the additional computation is unnecessary during inference.
Based on our observations, we presented REDA, a novel and gen-
eral framework for resource-efficient domain adaptation. REDA
performs transferability distillation across different layers in the
multi-exit architectures. Extensive empirical results validated the
effectiveness and efficiency of REDA.
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